Skip to main content
Log in

Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Rhamnogalacturonans I are complex pectin polysaccharides extremely variable in structure and properties and widely represented in various sources. The complexity and diversity of the structure of rhamnogalacturonans I are the reasons for the limited information about the properties and supramolecular organization of these polysaccharides, including the relationship between these parameters and the functions of rhamnogalacturonans I in plant cells. In the present work, on the example of rhamnogalacturonan I from flax gelatinous fibers, the ability of this type of pectic polysaccharides to form at physiological concentrations hydrogels with hyperelastic properties was revealed for the first time. According to IR spectroscopy, water molecules are more tightly retained in the gelling rhamnogalacturonan I from flax fiber cell wall in comparison with the non-gelling rhamnogalacturonan I from primary cell wall of potato. With increase in strength of water binding by rhamnogalacturonan I, there is an increase in elastic modulus and decrease in Poisson’s ratio of gel formed by this polysaccharide. The model of hyperelastic rhamnogalacturonan I capture by laterally interacting cellulose microfibrils, constructed using the finite element method, confirmed the suitability of rhamnogalacturonan I gel with the established properties for the function in the gelatinous cell wall, allowing consideration of this tissue- and stage-specific pectic polysaccharide as an important factor in creation of gelatinous fiber contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RGf:

flax fiber rhamnogalacturonan I before incorporation into the cell wall

RGfcw:

rhamnogalacturonan I of flax fiber cell wall

RGp:

rhamnogalacturonan I of potato primary cell wall

RH:

relative humidity

References

  1. Gorshkova, T A., Kozlova, L. V., and Mikshina, P. V. (2013) Spatial structure of plant cell wall polysaccharides and its functional significance, Biochemistry (Moscow), 78, 836–853.

    Article  CAS  Google Scholar 

  2. Vithanage, C. R., Grimson, M. J., Wills, P. R., Harrison, P., and Smith, B. G. (2010) Rheological and structural properties of high-methoxyl esterified, low-methoxyl esterified and low-methoxyl-amidated pectin gels, J. Texture Studies, 41, 899–927.

    Article  Google Scholar 

  3. Ngouemazong, E. D., Jolie, R. P., Cardinaels, R., Van Loey, A., Moldenaers, P., and Hendrickx, M. (2012) Stiffness of Ca2+-pectin gels: combined effect of degree and pattern of methyl esterification for various Ca2+ concentrations, Carbohydr. Res., 348, 69–76.

    Article  CAS  PubMed  Google Scholar 

  4. Mitsumata, T, Honda, A., Kanazawa, H., and Kawai, M. (2012) Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles, J. Phys. Chem., 116, 12341–12348.

    Article  CAS  Google Scholar 

  5. Brenner, T, Wang, Z., Achayuthakan, P., Nakajima, T, and Nishinari, K. (2013) Rheology and synergy of K-carrageenan/ locust bean gum/konjac glucomannan gels, Carbohydr. Polymers, 98, 754–760.

    Article  CAS  Google Scholar 

  6. Grant, G. T, Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Lett., 32, 195–198.

    Article  CAS  Google Scholar 

  7. Fishman, M. L., and Cooke, P. H. (2009) The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM, Carbohydr. Res., 344, 1792–1797.

    Article  CAS  PubMed  Google Scholar 

  8. Yapo, B. M., and Gnakri, D. (2014) Pectic polysaccharides and their functional properties, Polysaccharides; DOI: 10.1007/978-3-319-03751-6-62-1.

  9. Yapo, B. M. (2011) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages, Polymer Rev., 51, 391–413.

    Article  CAS  Google Scholar 

  10. Oosterveld, A., Beldman, G., Schols, H. A., and Voragen, A. G. (2000) Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp, Carbohydr. Res., 328, 185–197.

    Article  CAS  PubMed  Google Scholar 

  11. Sengkhamparn, N., Sagis, L. M. C., de Vries, R., Schols, H. A., Sajjaanantakul, T, and Voragen, A. G. J. (2010) Food Hydrocolloids, 24, 35–41.

    Article  CAS  Google Scholar 

  12. Morris, G. A., Ralet, M.-C., Bonnin, E., Thibault, J.-F., and Harding, S. E. (2010) Physical characterization of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin, Carbohydr. Polymers, 82, 1161–1167.

    Article  CAS  Google Scholar 

  13. Mikshina, P. V., Idiyatullin, B. Z., Petrova, A. A., Shashkov, A. S., Zuev, Y. F., and Gorshkova, T A. (2015) Physicochemical properties of complex rhamnogalacturonan I from gelatinous cell walls of flax fibers, Carbohydr. Polymers, 117, 853–861.

    Article  CAS  Google Scholar 

  14. Mellerowicz, E. J., Immerzeel, P., and Hayashi, T (2008) Xyloglucan: the molecular muscle of trees, Ann. Botany, 102, 659–665.

    Article  CAS  Google Scholar 

  15. Gorshkova, T A., Gurjanov, O. P., Mikshina, P. V., Ibragimova, N. N., Mokshina, N. E., Salnikov, V. V., Ageeva, M. V., Amenitskii, S. I., Chernova, T E., and Chemikosova, S. B. (2010) Specific type of secondary cell wall formed by plant fibers, Russ. J. Plant Physiol., 57, 328–341.

    Article  CAS  Google Scholar 

  16. Gorshkova, T, Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T, Lev-Yadun, S., Mellerowicz, E. J., Morvan, C., Neutelings, G., and Pilate, G. (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions, Crit. Rev. Plant Sci., 31, 201–228.

    Article  CAS  Google Scholar 

  17. Mellerowicz, E. J., and Gorshkova, T A. (2012) Tensional stress generation in gelatinous fibers: a review and possible mechanism based on cell-wall structure and composition, J. Exp. Bot., 63, 551–565.

    Article  CAS  PubMed  Google Scholar 

  18. Mikshina, P. V., Chernova, T E., Chemikosova, S. B., Ibragimova, N. N., Mokshina, N. Y, and Gorshkova, T A. (2013) in Cellulose (van de Ven, T, and Godbout, L., eds.) InTech, Rijeka, pp. 91–112.

    Google Scholar 

  19. Salnikov, V. V., Ageeva, M. V., and Gorshkova, T A. (2008) Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall, Protoplasma, 233, 269–273.

    Article  PubMed  Google Scholar 

  20. Gorshkova, T A., Wyatt, S. E., Salnikov, V. V., Gibeaut, D. M., Ibragimov, M. R., Lozovaya, V. V., and Carpita, N. C. (1996) Cell wall polysaccharides of developing flax plants, Plant Physiol., 110, 721–729.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Gorshkova, T A., Salnikov, V. V., Chemikosova, S. B., Ageeva, M. V., Pavlencheva, N. V., and van Dam, J. E. G. (2003) Snap point: a transient point in Linum usitatissimum bast fiber development, Ind. Crops Products, 18, 213–221.

    Article  Google Scholar 

  22. Gurjanov, O. P., Ibragimova, N. N., Gnezdilov, O. I., and Gorshkova, T. A. (2008) Polysaccharides, tightly bound to cellulose in the cell wall of flax bast fiber: isolation and identification, Carbohydr. Polymer, 72, 719–729.

    Article  CAS  Google Scholar 

  23. Dubois, M., Gilles, K. A., and Hamilton, J. K. (1956) Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350–356.

    Article  CAS  Google Scholar 

  24. Mikshina, P. V., Gurjanov, O. P., Mukhitova, F. K., Petrova, A. A., Shashkov, A. S., and Gorshkova, T. A. (2012) Structural details of pectic galactan from the secondary cell walls of flax (Linum usitatissimum L.) phloem fibers, Carbohydr. Polymers, 87, 853–861.

    Article  CAS  Google Scholar 

  25. Gulrez, S. K. H., Al-Assaf, S., and Phillips, G. O. (2011) Hydrogels: methods of preparation, characterization and applications, in Progress in Molecular and Environmental Bioengineering- From Analysis and Modeling to Technology Applications (Carpim, A., ed.) InTech, Rijeka, pp. 117–150.

    Google Scholar 

  26. Zimmermann, U., Husken, D., and Schulze, E.-D. (1980) Direct turgor pressure measurements in individual leaf cells of Tradescantia virginiana, Planta, 149, 445–453.

    Article  CAS  PubMed  Google Scholar 

  27. Perez, S., and Mazeau, K. (2005) in Polysaccharides: Structural Diversity and Functional Versatility, 2nd Edn. (Dumitriu, S., ed.) Marcel Dekker, N. Y., pp. 41–68.

    Google Scholar 

  28. Ioelovich, M. (2008) Cellulose as a nanostructured polymer: a short review, BioResources, 3, 1403–1418.

    Google Scholar 

  29. Sturcova, A., Davies, G. R., and Eichhorn, S. J. (2005) The elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules, 6, 1055–1061.

    Article  CAS  PubMed  Google Scholar 

  30. Bos, H. L. (2004) The Potential of Flax Fibers as Reinforcement for Composite Materials, Technische Universiteit Eindhoven, Proefschrift, Eindhoven.

  31. Kastner, H., Einhorn-Stoll, U., and Senge, B. (2012) Structure formation in sugar containing pectin gels- influence of Ca2+ on the gelation of low-methoxylated pectin at acidic pH, Food Hydrocolloids, 27, 42–49.

    Article  CAS  Google Scholar 

  32. Jha, A. K., Malik, M. S., Farach-Carson, M. C., Duncanb, R. L., and Jia, X. (2010) Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks, RSC J., 6, 5045–5055.

    CAS  Google Scholar 

  33. Robertson, C. G., Bogoslovov, R., and Roland, C. M. (2007) Effect of structural arrest on Poisson’s ratio in nanoreinforced elastomers, Phys. Rev., 75, 051403-1-7.

  34. Sekine, Y, Takagi, H., Sudo, S., Kajiwara, Y, Fukazawa, H., and Ikeda-Fukazawa, T (2014) Dependence of structure of polymer side chain on water structure in hydrogels, Polymer, 55, 6320–6324.

    Article  CAS  Google Scholar 

  35. Zundel, G. (1969) Hydration and Intermolecular Interaction: Infrared Investigations with Polyelectrolyte Membranes, Academic Press, Germany.

  36. Hofstetter, K., Hinterstoisser, B., and Salmen, L. (2006) Moisture uptake in native cellulose- the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange, Cellulose, 13, 131–145.

    Article  CAS  Google Scholar 

  37. Korobeinikov, S. N. (2000) Non-linear Deformation of Solids [in Russian], Izd-vo SO RAN, Novosibirsk.

  38. McNeil, M., Darvill, A. G., and Albersheim, P. (1980) Structure of plant cell walls: X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells, Plant Physiol., 66, 1128–1134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Goubet, F., Bourlard, T, Girault, R., Alexandre, C., Vandevelde, M. C., and Morvan, C. (1995) Structural features of galactans from flax fibers, Carbohydr. Polymers, 27, 221–227.

    Article  CAS  Google Scholar 

  40. Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Pectins: structure, biosynthesis and oligogalacturoniderelated signaling, Phytochemistry, 57, 929–967.

    Article  CAS  PubMed  Google Scholar 

  41. Western, T. L., Skinner, D. J., and Haughn, G. W. (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat, Plant Physiol., 122, 345–355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Naran, R., Chen, G., and Carpita, N. C. (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage, Plant Physiol., 148, 132–141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ahmed, E. M. (2015) Hydrogel: preparation, characterization, and applications, J. Adv. Res., 6, 105–121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Richel, A., and Paquot, M. (2012) in Carbohydrates — Comprehensive Studies on Glycobiology and Glycotechnology (Chang, Ch-F., ed.) InTech, Rijeka, pp. 21–36.

    Google Scholar 

  45. Bezakova, Z., Hermannova, M., Drimalova, E., Malovikova, A., Ebringerova, A., and Velebny, V. (2008) Effect of microwave irradiation on the molecular and structural properties of hyaluronan, Carbohydr. Polymers, 73, 640–646.

    Article  CAS  Google Scholar 

  46. Ulvskov, P., Wium, H., Bruce, D., Jorgensen, B., Qvist, K. B., Skjot, M., Hepworth, D., Borkhardt, B., and Sorensen, S. O. (2005) Biophysical consequences of remodeling the neutral side chains of rhamnogalacturonan I in tubers of transgenic potatoes, Planta, 220, 609–620.

    Article  CAS  PubMed  Google Scholar 

  47. Larsen, F. H., Byg, I., Damager, I., Diaz, J., Engelsen, S. B., and Ulvskov, P. (2011) Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy, Biomacromolecules, 12, 1844–1850.

    Article  CAS  PubMed  Google Scholar 

  48. Cardenas, A., Goycoolea, F. M., and Rinaudo, M. (2008) On the gelling behavior of “nopal” (Opuntia ficusindica) low methoxyl pectin, Carbohydr. Polymers, 73, 212222.

    Article  Google Scholar 

  49. Ngouemazong, E. D., Nkemamin, N. F., Cardinaels, R., Jolie, R. P., Fraeye, I., Van Loey, A. M., Moldenaers, P., and Hendrickx, M. E. (2012) Rheological properties of Ca2+-gels of partially methyl-esterified polygalacturonic acid: effect of “mixed” patterns of methyl-esterification, Carbohydr. Polymers, 88, 37–45.

    Article  CAS  Google Scholar 

  50. Park, H., Park, K., and Shalaby, W. S. W. (1993) Biodegradable Hydrogels for Drug Delivery, Technomic Publishing Company, Lancaster, Pennsylvania, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Mikshina.

Additional information

To whom correspondence should be addressed.

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 7, pp. 1088-1098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikshina, P.V., Petrova, A.A., Faizullin, D.A. et al. Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties. Biochemistry Moscow 80, 915–924 (2015). https://doi.org/10.1134/S000629791507010X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791507010X

Keywords

Navigation