Skip to main content

Advertisement

Log in

Prospects for using self-assembled nucleic acid structures

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

According to the central dogma in molecular biology, nucleic acids are assigned with key functions on storing and executing genetic information in any living cell. However, features of nucleic acids are not limited only with properties providing template-dependent biosynthetic processes. Studies of DNA and RNA unveiled unique features of these polymers able to make various self-assembled three-dimensional structures that, among other things, use the complementarity principle. Here, we review various self-assembled nucleic acid structures as well as application of DNA and RNA to develop nanomaterials, molecular automata, and nanodevices. It can be expected that in the near future results of these developments will allow designing novel next-generation diagnostic systems and medicinal drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

cluster of differentiation

c-Met:

hepatocyte growth factor receptor

HIV:

human immunodeficiency virus

RNase:

ribonuclease

SELEX:

systematic evolution of ligands by exponential enrichment

tRNA:

transfer RNA

References

  1. Crick, F. H. (1970) Central dogma of molecular biology, Nature, 227, 561–563.

    Article  CAS  PubMed  Google Scholar 

  2. Watson, J. D., and Crick, F. H. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid, Nature, 171, 737–738.

    Article  CAS  PubMed  Google Scholar 

  3. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  4. Siomi, H., and Siomi, M. C. (2009) On the road to reading the RNA-interference code, Nature, 457, 396–404.

    Article  CAS  PubMed  Google Scholar 

  5. Higgs, P. G. (2000) RNA secondary structure: physical and computational aspects, Q. Rev. Biophys., 33, 199–253.

    Article  CAS  PubMed  Google Scholar 

  6. Motorin, Y., and Helm, M. (2011) RNA nucleotide methylation, Wiley Interdiscipl. Rev. RNA, 2, 611–631.

    Article  CAS  Google Scholar 

  7. Limbach, P. A., Crain, P. F., and McCloskey, J. A. (1994) Summary: the modified nucleosides of RNA, Nucleic Acids Res., 22, 2183–2196.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wu, G., Yu, A. T., Kantartzis, A., and Yu, Y. T. (2011) Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation, Wiley Interdiscipl. Rev. RNA, 2, 571–581.

    Article  CAS  Google Scholar 

  9. Bogdanov, A. A., Zinovkin, R. A., and Zamyatnin, A. A., Jr. (2011) RNA editing: breaking the dogma, Biochemistry (Moscow), 76, 867–868.

    Article  CAS  Google Scholar 

  10. Bernhardt, H. S. (2012) The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others), Biol. Direct., 7, 23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gilbert, W. (1986) Origin of life: the RNA world, Nature, 319, 618.

    Article  Google Scholar 

  12. Kul’bachinskiy, A. I. (2006) Methods for selection of aptamers to protein targets, Uspekhi Biol. Khim., 46, 193–224.

    Google Scholar 

  13. Shangguan, D., Li, Y., Tang, Z., Cao, Z. C., Chen, H. W., Mallikaratchy, P., Sefah, K., Yang, C. J., and Tan, W. (2006) Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. USA, 103, 11838–11843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sampson, T. (2003) Aptamers and SELEX: the technology, World Patent Inform., 25, 123–129.

    Article  CAS  Google Scholar 

  15. Burke, D. H., and Gold, L. (1997) RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX, Nucleic Acids Res., 25, 2020–2024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lauhon, C. T., and Szostak, J. W. (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors, J. Am. Chem. Soc., 117, 1246–1257.

    Article  CAS  PubMed  Google Scholar 

  17. Klug, S. J., and Famulok, M. (1994) All you wanted to know about SELEX, Mol. Biol. Rep., 20, 97–107.

    Article  CAS  PubMed  Google Scholar 

  18. Djordjevic, M. (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways, Biomol. Eng., 24, 179–189.

    Article  CAS  PubMed  Google Scholar 

  19. Cox, J. C., Hayhurst, A., Hesselberth, J., Bayer, T. S., Georgiou, G., and Ellington, A. D. (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer, Nucleic Acids Res., 30, 108.

    Article  Google Scholar 

  20. Nagarkatti, R., Bist, V., Sun, S., Fortes de Araujo, F., Nakhasi, H. L., and Debrabant, A. (2012) Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood, PLoS One, 7, 43533.

    Article  Google Scholar 

  21. Labib, M., Zamay, A. S., Kolovskaya, O. S., Reshetneva, I. T., Zamay, G. S., Kibbee, R. J., Sattar, S. A., Zamay, T. N., and Berezovski, M. V. (2012) Aptamer-based impedimetric sensor for bacterial typing, Anal. Chem., 84, 8114–8117.

    Article  CAS  PubMed  Google Scholar 

  22. Reshetnikov, R. V., Golovin, A. V., and Kopylov, A. M. (2010) Comparison of models of thrombin-binding 15-mer DNA aptamer by molecular dynamics simulation, Biochemistry (Moscow), 75, 1017–1024.

    Article  CAS  Google Scholar 

  23. Barbu, M., and Stojanovic, M. N. (2012) A fresh look at adenosine-binding DNA motifs, Chembiochem, 13, 658–660.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, J., Nguyen, T., Pei, R., Stojanovic, M., and Lin, Q. (2012) Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device, Lab. Chip., 12, 3504–3513.

    Article  PubMed Central  CAS  Google Scholar 

  25. Zhu, J., Shang, J., Jia, Y., Pei, R., Stojanovic, M., and Lin, Q. (2014) Spatially selective release of aptamer-captured cells by temperature mediation, IET Nanobiotechnol., 8, 2–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J., Hilton, J. P., Yang, K. A., Pei, R., Stojanovic, M., and Lin, Q. (2013) Nucleic acid isolation and enrichment on a microchip, Sens. Actuators A. Phys., 195, 183–190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ramalingam, D., Duclair, S., Datta, S. A., Ellington, A., Rein, A., and Prasad, V. R. (2011) RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production, J. Virol., 85, 305–314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Boltz, A., Piater, B., Toleikis, L., Guenther, R., Kolmar, H., and Hock, B. (2011) Bi-specific aptamers mediating tumor cell lysis, J. Biol. Chem., 286, 21896–21905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Debbage, P. (2009) Targeted drugs and nanomedicine: present and future, Curr. Pharm. Des., 15, 153–172.

    Article  CAS  PubMed  Google Scholar 

  30. Schrama, D., Reisfeld, R. A., and Becker, J. C. (2006) Antibody targeted drugs as cancer therapeutics, Nature Rev. Drug Discov., 5, 147–159.

    Article  CAS  Google Scholar 

  31. Jagannathan, V., Roulet, E., Delorenzi, M., and Bucher, P. (2006) HTPSELEX — a database of high-throughput SELEX libraries for transcription factor binding sites, Nucleic Acids Res., 34, 90–94.

    Article  Google Scholar 

  32. Chen, J. H., and Seeman, N. C. (1991) Synthesis from DNA of a molecule with the connectivity of a cube, Nature, 350, 631–633.

    Article  CAS  PubMed  Google Scholar 

  33. Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. (1998) Design and self-assembly of two-dimensional DNA crystals, Nature, 394, 539–544.

    Article  CAS  PubMed  Google Scholar 

  34. Seeman, N. C. (2005) From genes to machines: DNA nanomechanical devices, Trends Biochem. Sci., 30, 119–125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Castro, C. E., Kilchherr, F., Kim, D. N., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., and Dietz, H. (2011) A primer to scaffolded DNA origami, Nature Methods, 8, 221–229.

    Article  CAS  PubMed  Google Scholar 

  36. Winfree, E. (2000) Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments, J. Biomol. Struct. Dyn., 17, 263–270.

    Article  PubMed  Google Scholar 

  37. Wang, H. (1965) Games, logic and computers, Sci. Am., 98–106.

    Google Scholar 

  38. Rothemund, P. W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D. K., and Winfree, E. (2004) Design and characterization of programmable DNA nanotubes, J. Am. Chem. Soc., 126, 16344–16352.

    Article  CAS  PubMed  Google Scholar 

  39. Douglas, S. M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., and Shih, W. M. (2009) Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 459, 414–418.

    Article  PubMed Central  CAS  Google Scholar 

  40. Rothemund, P. W. (2006) Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297–302.

    Article  CAS  PubMed  Google Scholar 

  41. Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M. N., Walter, N. G., Winfree, E., and Yan, H. (2010) Molecular robots guided by prescriptive landscapes, Nature, 465, 206–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L., Pedersen, J. S., Birkedal, V., Besenbacher, F., Gothelf, K. V., and Kjems, J. (2009) Self-assembly of a nanoscale DNA box with a controllable lid, Nature, 459, 73–76.

    Article  CAS  PubMed  Google Scholar 

  43. Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., and Shih, W. M. (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno, Nucleic Acids Res., 37, 5001–5006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B. L., Stefanovic, D., and Stojanovic, M. N. (2006) Medium scale integration of molecular logic gates in an automaton, Nano Lett., 6, 2598–2603.

    Article  CAS  PubMed  Google Scholar 

  45. Pei, R., Macdonald, J., and Stojanovic, M. N. (2012) Development of trainable deoxyribozyme-based game playing automaton, Methods Mol. Biol., 848, 419–437.

    Article  CAS  PubMed  Google Scholar 

  46. Douglas, S. M., Bachelet, I., and Church, G. M. (2012) A logic-gated nanorobot for targeted transport of molecular payloads, Science, 335, 831–834.

    Article  CAS  PubMed  Google Scholar 

  47. Shin, J. S., and Pierce, N. A. (2004) A synthetic DNA walker for molecular transport, J. Am. Chem. Soc., 126, 10834–10835.

    Article  CAS  PubMed  Google Scholar 

  48. Faulhammer, D., Lipton, R. J., and Landweber, L. F. (1999) Counting DNA: estimating the complexity of a test tube of DNA, Biosystems, 52, 193–196.

    Article  CAS  PubMed  Google Scholar 

  49. Fu, P. (2007) Biomolecular computing: is it ready to take off? Biotechnol. J., 2, 91–101.

    Article  CAS  PubMed  Google Scholar 

  50. Hush, N. S. (2003) An overview of the first half-century of molecular electronics, Ann. NY Acad. Sci., 1006, 1–20.

    Article  CAS  PubMed  Google Scholar 

  51. Head, T. (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biol., 49, 737–759.

    Article  CAS  PubMed  Google Scholar 

  52. Head, T. (1992) Splicing schemes and DNA, in Lindenmayer Systems: Impacts on Theoretical Computer Science and Developmental Biology, Springer-Verlag, Berlin, pp. 371–383.

    Chapter  Google Scholar 

  53. Adleman, L. M. (1994) Molecular computation of solutions to combinatorial problems, Science, 266, 1021–1024.

    Article  CAS  Google Scholar 

  54. Rubin, F. (1974) A search procedure for Hamilton paths and circuits, J. ACM, 21, 5404–5411.

    Article  Google Scholar 

  55. Garey, M., and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP Completeness, WH Freeman, NY.

    Google Scholar 

  56. Ouyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A. (1997) DNA solution of the maximal clique problem, Science, 278, 446–449.

    Article  CAS  PubMed  Google Scholar 

  57. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W., and Adleman, L. (2002) Solution of a 20-variable 3-SAT problem on a DNA computer, Science, 296, 499–502.

    Article  CAS  PubMed  Google Scholar 

  58. Pool, R. (1995) A boom in plans for DNA computing, Science, 268, 498–499.

    Article  CAS  PubMed  Google Scholar 

  59. Lipton, R. J. (1995) DNA solution of hard computational problems, Science, 268, 542–545.

    Article  CAS  PubMed  Google Scholar 

  60. Woese, C. R. (1967) The Genetic Code: The Molecular Basis for Genetic Expression, Harper and Row, NY.

    Google Scholar 

  61. Rothstein, M. (1977) Recent developments in the age-related alteration of enzymes: a review, Mech. Ageing Dev., 6, 241–257.

    Article  CAS  PubMed  Google Scholar 

  62. North, G. (1989) Nobel prizes: chemistry. RNA’s catalytic role, Nature, 341, 556.

    CAS  PubMed  Google Scholar 

  63. Altman, S. (2000) The road to RNase P, Nature Struct. Biol., 7, 827–828.

    Article  CAS  PubMed  Google Scholar 

  64. Schubert, S., and Kurreck, J. (2004) Ribozyme- and deoxyribozyme-strategies for medical applications, Curr. Drug Targets, 5, 667–681.

    Article  CAS  PubMed  Google Scholar 

  65. Flores, R., Navarro, J. A., de la Pena, M., Navarro, B., Ambros, S., and Vera, A. (1999) Viroids with hammerhead ribozymes: some unique structural and functional aspects with respect to other members of the group, Biol. Chem., 380, 849–854.

    Article  CAS  PubMed  Google Scholar 

  66. Forster, A. C., and Symons, R. H. (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites, Cell, 49, 211–220.

    Article  CAS  PubMed  Google Scholar 

  67. Rodnina, M. V. (2013). The ribosome as a versatile catalyst: reactions at the peptidyl transferase center, Curr. Opin. Struct. Biol., 23, 595–602.

    Article  CAS  PubMed  Google Scholar 

  68. Wochner, A., Attwater, J., Coulson, A., and Holliger, P. (2011) Ribozyme-catalyzed transcription of an active ribozyme, Science, 332, 209–212.

    Article  CAS  Google Scholar 

  69. Szostak, J. W. (2012) The eightfold path to non-enzymatic RNA replication, J. Syst. Chem., 3, 2.

    Article  CAS  Google Scholar 

  70. Frommer, J., Appel, B., and Muller, S. (2014) Ribozymes that can be regulated by external stimuli, Curr. Opin. Biotechnol., 18, 35–41.

    Google Scholar 

  71. Kore, A. R., Vaish, N. K., Kutzke, U., and Eckstein, F. (1998) Sequence specificity of the hammerhead ribozyme revisited; the NHH rule, Nucleic Acids Res., 26, 4116–4120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ferre-D’Amare, A. R. (2004) The hairpin ribozyme, Biopolymers, 73, 71–78.

    Article  PubMed  Google Scholar 

  73. Robertson, M. P., and Ellington, A. D. (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons, Nature Biotechnol., 17, 62–66.

    Article  CAS  Google Scholar 

  74. Fujita, Y., Ishikawa, J., Furuta, H., and Ikawa, Y. (2010) Generation and development of RNA ligase ribozymes with modular architecture through “design and selection”, Molecules, 15, 5850–5865.

    Article  CAS  PubMed  Google Scholar 

  75. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31, 147–157.

    Article  CAS  PubMed  Google Scholar 

  76. Cheng, L. K., and Unrau, P. J. (2010) Closing the circle: replicating RNA with RNA, Cold Spring Harb. Perspect. Biol., 2.

  77. Bagheri, S., and Kashani-Sabet, M. (2004) Ribozymes in the age of molecular therapeutics, Curr. Mol. Med., 4, 489–506.

    Article  CAS  Google Scholar 

  78. Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents, Science, 247, 1222–1225.

    Article  CAS  PubMed  Google Scholar 

  79. Sarkar, I., Hauber, I., Hauber, J., and Buchholz, F. (2007) HIV-1 proviral DNA excision using an evolved recombinase, Science, 316, 1912–1915.

    Article  CAS  PubMed  Google Scholar 

  80. Wilson, C., and Szostak, J. W. (1995) In vitro evolution of a self-alkylating ribozyme, Nature, 374, 777–782.

    Article  CAS  PubMed  Google Scholar 

  81. Ding, S. W. (2010) RNA-based antiviral immunity, Nature Rev. Immunol., 10, 632–644.

    Article  CAS  Google Scholar 

  82. Zaher, H. S., and Unrau, P. J. (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity, RNA, 13, 1017–1026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Motorin, Y., and Helm, M. (2010) tRNA stabilization by modified nucleotides, Biochemistry, 49, 4934–4944.

    Article  CAS  PubMed  Google Scholar 

  84. Motorin, Y., and Helm, M. (2011) RNA nucleotide methylation, Wiley Interdiscipl. Rev. RNA, 2, 611–631.

    Article  CAS  Google Scholar 

  85. Breaker, R. R., and Joyce, G. F. (1994) A DNA enzyme that cleaves RNA, Chem. Biol., 1, 223–229.

    Article  CAS  PubMed  Google Scholar 

  86. Breaker, R. R. (1997) DNA enzymes, Nature Biotechnol., 15, 427–431.

    Article  CAS  Google Scholar 

  87. Santoro, S. W., and Joyce, G. F. (1997) A general purpose RNA-cleaving DNA enzyme, Proc. Natl. Acad. Sci. USA, 94, 4262–4266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Li, Y., and Breaker, R. R. (1999) Deoxyribozymes: new players in the ancient game of biocatalysis, Curr. Opin. Struct. Biol., 9, 315–323.

    Article  CAS  PubMed  Google Scholar 

  89. Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler, V. P., Jr., Rudchenko, S., and Stojanovic, M. N. (2013) Autonomous molecular cascades for evaluation of cell surfaces, Nature Nanotechnol., 8, 580–586.

    Article  CAS  Google Scholar 

  90. Stojanovic, M. N., and Stefanovic, D. (2003) A deoxyribozyme-based molecular automaton, Nature Biotechnol., 21, 1069–1074.

    Article  CAS  Google Scholar 

  91. Zola, H., Swart, B., Banham, A., Barry, S., Beare, A., Bensussan, A., Boumsell, L., Buckley, C., Buhring, H. J., Clark, G., Engel, P., Fox, D., Jin, B. Q., Macardle, P. J., Malavasi, F., Mason, D., Stockinger, H., and Yang, X. (2007) CD molecules 2006 — human cell differentiation molecules, J. Immunol. Methods, 319, 1–5.

    Article  CAS  PubMed  Google Scholar 

  92. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., and Shapiro, E. (2001) Programmable and autonomous computing machine made of biomolecules, Nature, 414, 430–434.

    Article  CAS  PubMed  Google Scholar 

  93. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., and Shapiro, E. (2004) An autonomous molecular computer for logical control of gene expression, Nature, 429, 423–429.

    Article  CAS  PubMed  Google Scholar 

  94. Soloveichik, D., and Winfree, E. (2005) The computational power of Benenson automata, Theor. Comput. Sci., 344, 279–297.

    Article  Google Scholar 

  95. Alvarez-Lorenzo, C., and Concheiro, A. (2014) Smart drug delivery systems: from fundamentals to the clinic, Chem. Commun., 50, 7743–7765.

    Article  CAS  Google Scholar 

  96. Klasa, R. J., Gillum, A. M., Klem, R. E., and Frankel, S. R. (2002) Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment, Antisense Nucleic Acid Drug Dev., 12, 193–213.

    Article  CAS  PubMed  Google Scholar 

  97. Kahan-Hanum, M., Douek, Y., Adar, R., and Shapiro, E. (2013) A library of programmable DNAzymes that operate in a cellular environment, Sci. Rep., 3, 1535.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Grassi, G., and Grassi, M. (2013) First-in-human trial of Dz13 for nodular basal-cell carcinoma, Lancet, 381, 1797–1798.

    Article  PubMed  Google Scholar 

  99. Seeman, N. C. (2004) Nanotechnology and the double helix, Sci. Am., 290, 64–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zamyatnin Jr..

Additional information

Original Russian Text © M. N. Rudchenko, A. A. Zamyatnin, Jr., 2015, published in Biokhimiya, 2015, Vol. 80, No. 4, pp. 461–471.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudchenko, M.N., Zamyatnin, A.A. Prospects for using self-assembled nucleic acid structures. Biochemistry Moscow 80, 391–399 (2015). https://doi.org/10.1134/S000629791504001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791504001X

Key words

Navigation