Skip to main content

Properties of DNA

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Deoxyribonucleic acid (DNA) is best known for its central role in the encoding, storage, replication, and propagation of genetic information within all known, independently living organisms. However, DNA is also a chemical material that can be produced in industrial quantities by well-developed, synthetic chemistry techniques for a wide variety of biological and nonbiological purposes. As a polymeric material with known nanometer-scale dimensions and well-understood, programmable, molecular recognition capabilities, DNA has become a leading construction material for bottom-up fabrication of nanomaterials with complex structures and functions. This field, known as structural DNA nanotechnology, has recently become a major source of self-assembling, molecularly programmed materials. To fully comprehend the design rules and application potential of DNA-based materials, it is critical for researchers to understand the characteristic properties of DNA itself; thus, delineating these underlying properties is the purpose of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloomfield VA, Crothers DM, Tinoco I (2000) Nucleic acids: structures, properties, and functions. University Science Books, Sausalito

    Google Scholar 

  2. Mandelkern M, Elias JG, Eden D, Crothers DM (1981) The dimensions of DNA in solution. J Mol Biol 152(1):153–161. doi:10.1016/0022-2836(81)90099-1

    Google Scholar 

  3. Murphy MC, Rasnik I, Cheng W, Lohman TM, Ha TJ (2004) Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys J 86(4):2530–2537

    Google Scholar 

  4. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34(2):564–574

    Google Scholar 

  5. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Google Scholar 

  6. Woo S, Rothemund PW (2011) Programmable molecular recognition based on the geometry of DNA nanostructures. Nat Chem 3(8):620–627

    Google Scholar 

  7. Yan H et al (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100(14):8103–8108

    Google Scholar 

  8. Davis JT (2004) G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl 43(6):668–698

    Google Scholar 

  9. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366

    Google Scholar 

  10. Gehring K, Leroy JL, Gueron M (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 363(6429):561–565

    Google Scholar 

  11. Phan AT, Mergny JL (2002) Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res 30(21):4618–4625

    Google Scholar 

  12. Lane AN et al (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36(17):5482–5515

    Google Scholar 

  13. Laisne A, Pompon D, Leroy JL (2010) [C7GC4]4 association into supra molecular i-motif structures. Nucleic Acids Res 38(11):3817–3826

    Google Scholar 

  14. Lin Z et al (2011) DNA nanotechnology based on polymorphic G-Quadruplex. Prog Chem 23(5):974–982

    Google Scholar 

  15. Liu D, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed Engl 42(46):5734–5736

    Google Scholar 

  16. Sondermann A et al (2002) Assembly of G-Quartet based DNA superstructures (G-Wires). AIP Conf Proc 640(1):93–98

    Google Scholar 

  17. Afek A et al (2011) Nonspecific transcription-factor-DNA binding influences nucleosome occupancy in yeast. Biophys J 101(10):2465–2475

    Google Scholar 

  18. Jen-Jacobson L et al (2000) Thermodynamic parameters of specific and nonspecific protein-DNA binding. Supramol Chem 12:143–160

    Google Scholar 

  19. Howley PM et al (1979) A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. J Biol Chem 254(11):4876–4883

    Google Scholar 

  20. Schildkraut C (1965) Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3(2):195–208

    Google Scholar 

  21. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(Web Server issue):W43–6

    Google Scholar 

  22. Wetmur JG (1991) DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol 26(3–4):227–259

    Google Scholar 

  23. Harris NC, Kiang CH (2006) Defects can increase the melting temperature of DNA-nanoparticle assemblies. J Phys Chem B 110(33):16393–16396

    Google Scholar 

  24. Maye MM et al (2010) Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 5(2):116–120

    Google Scholar 

  25. Knorowski C, Travesset A (2012) Dynamics of DNA-programmable nanoparticle crystallization: gelation, nucleation and topological defects. Soft Matter 8:12053–12059

    Google Scholar 

  26. Sponer J, Leszczynski J, Hobza P (1996) Nature of Nucleic acid–base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J Phys Chem 100(13):5590–5596

    Google Scholar 

  27. Mao C, Sun W, Seeman NC (1999) Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J Am Chem Soc 121(23):5437–5443

    Google Scholar 

  28. Izatt RM, Christensen JJ, Rytting JH (1971) Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev 71(5):439–481

    Google Scholar 

  29. Eichhorn GL, Shin YA (1968) Interaction of metal ions with polynucleotides and related compounds. XII. The relative effect of various metal ions on DNA helicity. J Am Chem Soc 90(26):7323–7328

    Google Scholar 

  30. Hickey DR, Turner DH (1985) Solvent effects on the stability of A7u7p. Biochemistry 24(8):2086–2094

    Google Scholar 

  31. McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8(8):3289–3295

    Google Scholar 

  32. Hogberg B, Liedl T, Shih WM (2009) Folding DNA origami from a double-stranded source of scaffold. J Am Chem Soc 131(26):9154–9155

    Google Scholar 

  33. Jungmann R et al (2008) Isothermal assembly of DNA origami structures using denaturing agents. J Am Chem Soc 130(31):10062–10063

    Google Scholar 

  34. Cleaver JE, Boyer HW (1971) Solubility and dialysis limits of DNA oligonucleotides. Biochem Biophys Acta 262:116–124

    Google Scholar 

  35. Tan SC, Yiap BC (2009) DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 2009:574398

    Google Scholar 

  36. Blake RD (2006) Denaturation of DNA. In: Encyclopedia of molecular cell biology and molecular medicine. Wiley-VCH Verlag GmbH & Co, Germany

    Google Scholar 

  37. Bloomfield VA, Crothers DM, Tinoco I (1974) Physical chemistry of nucleic acids. In: Nucleic acids: structures, properties, and functions. Harper and Row, New York

    Google Scholar 

  38. Shi Y et al (1990) Applications of psoralens as probes of nucleic acid structure and function. In: Morrison H (ed) Bioorganic photochemistry, vol 1, Photochemistry and the nucleic acids. Wiley, New York

    Google Scholar 

  39. Stone MP et al (2008) Interstrand DNA cross-links induced by alpha, beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res 41(7):793–804

    Google Scholar 

  40. Kohn KW, Spears CL, Doty P (1966) Inter-strand crosslinking of DNA by nitrogen mustard. J Mol Biol 19(2):266–288

    Google Scholar 

  41. Lausted C et al (2004) POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer. Genome Biol 5(8):R58

    Google Scholar 

  42. Quan J et al (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29(5):449–452

    Google Scholar 

  43. Marchi AN et al (2013) One-Pot assembly of a Hetero-dimeric DNA Origami from chip-derived staples and Double-Stranded Scaffold. ACS Nano 7(2):903–910

    Google Scholar 

  44. Saaem I et al (2010) In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS Appl Mater Interfaces 2(2):491–497

    Google Scholar 

  45. Lehninger AL (1975) Biochemistry. Worth, New York

    Google Scholar 

  46. Zhao L et al (2008) Intracellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular water exchange lifetime. NMR Biomed 21(2):159–164

    Google Scholar 

  47. Bansal M (2003) DNA structure: revisiting the Watson-Crick double helix. Curr Sci 85(11):1556–1563

    Google Scholar 

  48. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Google Scholar 

  49. Bustamante C et al (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10(3):279–285

    Google Scholar 

  50. Rubinstein M, Colby RH (2003) Ideal chains, in polymer physics. Oxford University Press, Oxford/New York, pp xi, 440

    Google Scholar 

  51. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    Google Scholar 

  52. Strick T et al (2000) Twisting and stretching single DNA molecules. Prog Biophys Mol Biol 74(1–2):115–140

    Google Scholar 

  53. Balaeff AA, Craig SL, Beratan DN (2011) B-DNA to zip-DNA: simulating a DNA transition to a novel structure with enhanced charge-transport characteristics. J Phys Chem A 115(34):9377–9391

    Google Scholar 

  54. Sim AY, Minary P, Levitt M (2012) Modeling nucleic acids. Curr Opin Struct Biol 22(3):273–278

    Google Scholar 

  55. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210

    Google Scholar 

  56. Kim DN et al (2012) Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40(7):2862–2868

    Google Scholar 

  57. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms – proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87(12):4576–4579

    Google Scholar 

  58. Sapp J (2006) Two faces of the prokaryote concept. Int Microbiol 9(3):163–172

    Google Scholar 

  59. Karp C (2004) Cell and molecular biology: concepts and experiments. Wiley, Hoboken

    Google Scholar 

  60. Goodsell DS (2001) The molecular perspective: ultraviolet light and pyrimidine dimers. Oncologist 6(3):298–299

    Google Scholar 

  61. Perry JJP et al (2010) Structural dynamics in DNA damage signaling and repair. Curr Opin Struct Biol 20(3):283–294

    Google Scholar 

  62. Eley DD, Spivey DI (1962) Semiconductivity of organic substances. Trans Faraday Soc 58:411–415

    Google Scholar 

  63. Kasumov AY et al (2001) Proximity-induced superconductivity in DNA. Science 291:280–282

    Google Scholar 

  64. Boon EM, Barton JK (2002) Charge transport in DNA. Curr Opin Struct Biol 12(3):320–329

    Google Scholar 

  65. Fink HW, Schonenberger C (1999) Electrical conduction through DNA molecules. Nature 398:407–410

    Google Scholar 

  66. Porath D et al (2000) Direct measurement of electrical transport through DNA molecules. Nature 403:635–638

    Google Scholar 

  67. Jortner J et al (1998) Charge transfer and transport in DNA. Proc Natl Acad Sci USA 95:12759–12765

    Google Scholar 

  68. Grozema FC, Berlin YA, Siebbeles LDA (1999) Sequence dependent charge transfer in donor-DNA-acceptor systems: a theoretical study. Int J Quantum Chem 75:1009–1016

    Google Scholar 

  69. Genereux JC, Barton JK (2009) Molecular electronics: DNA charges ahead. Nat Chem 1:106–107

    Google Scholar 

  70. Kawai K et al (2009) Sequence independent and rapid long-range charge transfer through DNA. Nat Chem 1:156–159

    Google Scholar 

  71. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024

    Google Scholar 

  72. Schulman R, Yurke B, Winfree E (2012) Robust self-replication of combinatorial information via crystal growth and scission. Proc Natl Acad Sci USA 109(17):6405–6410

    Google Scholar 

  73. Apter MJ, Wolpert L (1965) Cybernetics and development. I. Information theory. J Theor Biol 8(2):244–257

    Google Scholar 

  74. Adami C (2004) Information theory in molecular biology. Phys Life Rev 1:3–22

    Google Scholar 

  75. Schneider TD (2010) A brief review of molecular information theory. Nano Commun Netw 1(3):173–180

    Google Scholar 

  76. Marathe A, Condon AE, Corn RM (2001) On combinatorial DNA word design. J Comput Biol 8(3):201–219

    Google Scholar 

  77. Holliday R (2007) A mechanism for gene conversion in fungi. Genet Res 89(5–6):285–307

    Google Scholar 

  78. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247

    Google Scholar 

  79. Fu TJ, Tse-Dinh YC, Seeman NC (1994) Holliday junction crossover topology. J Mol Biol 236(1):91–105

    Google Scholar 

  80. Petrillo ML et al (1988) The ligation and flexibility of four-arm DNA junctions. Biopolymers 27(9):1337–1352

    Google Scholar 

  81. Goodman RP et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754):1661–1665

    Google Scholar 

  82. He Y et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452(7184):198–201

    Google Scholar 

  83. Seeman NC (1996) The design and engineering of nucleic acid nanoscale assemblies. Curr Opin Struct Biol 6(4):519–526

    Google Scholar 

  84. Zhang C et al (2008) Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci USA 105(31):10665–10669

    Google Scholar 

  85. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220

    Google Scholar 

  86. Li X et al (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 118:6131–6140

    Google Scholar 

  87. Majumder U et al (2011) Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J Am Chem Soc 133(11):3843–3845

    Google Scholar 

  88. Malo J, Mitchell JC, Turberfield AJ (2009) A two-dimensional DNA array: the three-layer logpile. J Am Chem Soc 131(38):13574–13575

    Google Scholar 

  89. Reishus D et al (2005) Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. J Am Chem Soc 127(50):17590–17591

    Google Scholar 

  90. LaBean TH et al (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860

    Google Scholar 

  91. Liu D et al (2004) Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 126(8):2324–2325

    Google Scholar 

  92. Qi J, Li X, Seeman NC (1996) Ligation of triangles built from bulged 3-arm DNA branched junctions. J Am Chem Soc 118(26):6121–6130

    Google Scholar 

  93. Rothemund PW, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424

    Google Scholar 

  94. Shen Z et al (2004) Paranemic crossover DNA: a generalized holliday structure with applications in nanotechnology. J Am Chem Soc 126(6):1666–1674

    Google Scholar 

  95. Yang X et al (1998) Ligation of DNA triangles containing double crossover molecules. J Am Chem Soc 120(38):9779–9786

    Google Scholar 

  96. Zhang X et al (2002) Paranemic cohesion of topologically-closed DNA molecules. J Am Chem Soc 124(44):12940–12941

    Google Scholar 

  97. Hamada S, Murata S (2009) Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew Chem Int Ed Engl 48(37):6820–6823

    Google Scholar 

  98. Sun X et al (2009) Surface-mediated DNA self-assembly. J Am Chem Soc 131(37):13248–13249

    Google Scholar 

  99. Liu Y, Ke Y, Yan H (2005) Self-assembly of symmetric finite-size DNA nanoarrays. J Am Chem Soc 127(49):17140–17141

    Google Scholar 

  100. Park SH et al (2006) Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew Chem Int Ed Engl 45(5):735–739

    Google Scholar 

  101. Pistol C, Dwyer C (2007) Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology 18(12):125305

    Google Scholar 

  102. Schulman R, Winfree E (2007) Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc Natl Acad Sci USA 104(39):15236–15241

    Google Scholar 

  103. Ke Y et al (2006) A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J Am Chem Soc 128(13):4414–4421

    Google Scholar 

  104. Kuzuya A et al (2007) Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett 7(6):1757–1763

    Google Scholar 

  105. Liu D et al (2004) DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc Natl Acad Sci USA 101(3):717–722

    Google Scholar 

  106. Mitchell JC et al (2004) Self-assembly of chiral DNA nanotubes. J Am Chem Soc 126(50):16342–16343

    Google Scholar 

  107. Rothemund PW et al (2004) Design and characterization of programmable DNA nanotubes. J Am Chem Soc 126(50):16344–16352

    Google Scholar 

  108. Yin P et al (2008) Programming DNA tube circumferences. Science 321(5890):824–826

    Google Scholar 

  109. Lo PK, Metera KL, Sleiman HF (2010) Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Curr Opin Chem Biol 14(5):597–607

    Google Scholar 

  110. Samano EC et al (2011) Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter 7:3240–3245

    Google Scholar 

  111. Simmel FC (2007) Towards biomedical applications for nucleic acid nanodevices. Nanomedicine (Lond) 2(6):817–830

    Google Scholar 

  112. Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21(4):376–391

    Google Scholar 

  113. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730

    Google Scholar 

  114. Han D et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346

    Google Scholar 

  115. Ke Y, Voigt NV, Gothelf KV, Shih WM (2012) Multilayer DNA origami packed on hexagonal and hybrid lattices. J Am Chem Soc 134:1770–1774

    Google Scholar 

  116. Zhang H et al (2012) Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem Commun (Camb) 48:6405–6407

    Google Scholar 

  117. Liu W et al (2011) Crystalline two-dimensional DNA-origami arrays. Angew Chem Int Ed Engl 50(1):264–267

    Google Scholar 

  118. Yang Y et al (2012) DNA origami with double-stranded DNA as a unified scaffold. ACS Nano 6(9):8209–8215

    Google Scholar 

  119. Endo M et al (2010) Programmed-assembly system using DNA jigsaw pieces. Chemistry 16(18):5362–5368

    Google Scholar 

  120. Endo M et al (2011) Two-dimensional DNA origami assemblies using a four-way connector. Chem Commun 47:3213–3215

    Google Scholar 

  121. Li Z et al (2010) Molecular behavior of DNA origami in higher-order self-assembly. J Am Chem Soc 132(38):13545–13552

    Google Scholar 

  122. Rajendran A et al (2011) Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5(1):665–671

    Google Scholar 

  123. Rangnekar A et al (2012) Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures. Nanomedicine 8(5):673–681

    Google Scholar 

  124. Zhao Z, Liu Y, Yan H (2011) Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett 11(7):2997–3002

    Google Scholar 

  125. Zhao Z, Yan H, Liu Y (2010) A route to scale up DNA origami using DNA tiles as folding staples. Angew Chem Int Ed Engl 49(8):1414–1417

    Google Scholar 

  126. Torring T et al (2011) DNA origami: a quantum leap for self-assembly of complex structures. Chem Soc Rev 40(12):5636–5646

    Google Scholar 

  127. Gothelf KV (2012) LEGO-like DNA structures. Science 338:1159–1160

    Google Scholar 

  128. Castro CE et al (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229

    Google Scholar 

  129. Hung AM, Noh H, Cha JN (2010) Recent advances in DNA-based directed assembly on surfaces. Nanoscale 2(12):2530–2537

    Google Scholar 

  130. Li H, Labean TH, Leong KW (2011) Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus 1(5):702–724

    Google Scholar 

  131. McLaughlin CK, Hamblin GD, Sleiman HF (2011) Supramolecular DNA assembly. Chem Soc Rev 40(12):5647–5656

    Google Scholar 

  132. Shih WM, Lin C (2010) Knitting complex weaves with DNA origami. Curr Opin Struct Biol 20(3):276–282

    Google Scholar 

  133. Smith D et al (2013) Nucleic acid nanostructures for biomedical applications. Nanomedicine (Lond) 8(1):105–121

    Google Scholar 

  134. Zhang G et al (2013) DNA nanostructure meets nanofabrication. Chem Soc Rev 42(7):2488–2496

    Google Scholar 

  135. Andersen ES (2010) Prediction and design of DNA and RNA structures. N Biotechnol 27(3):184–193

    Google Scholar 

  136. Andersen ES et al (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6):1213–1218

    Google Scholar 

  137. Douglas SM et al (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pedersen, R. et al. (2014). Properties of DNA. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_10

Download citation

Publish with us

Policies and ethics