Skip to main content
Log in

Lithium salts — Simple but magic

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

For many decades pharmacological drugs based on lithium salts have been successfully used in psychiatry to treat bipolar disorder, and they remain the “gold standard” of pharmacological therapy of patients with this disease. At the same time, over recent years in experiments in vitro and in vivo a plethora of evidence has accumulated on a positive effect of lithium ions in other areas including their neuro-, cardio-, and nephroprotective properties, regulation of stem cells functions, regulation of inflammation, and others. Numerous studies have shown that the effect of lithium ions involves several mechanisms; however, one of its main targets in the implementation of most of the effects is glycogen synthase kinase 3β, a key enzyme in various pathological and protective signaling pathways in cells. However, one of the main limitations of the use of lithium salts in clinics is their narrow therapeutic window, and the risk of toxic side effects. This review presents the diversity of effects of lithium ions on the organism emphasizing their potential clinical applications with minimal undesirable side effects. In the end, we present a schematic “Lithiometer”, comparing the range of Li+ concentrations that might be used for the treatment of acute pathologies with possible toxic effects of Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IMP:

inositol monophosphatase

ROS:

reactive oxygen species

References

  1. Cade, J. F. (1949) Lithium salts in the treatment of psychotic excitement, Med. J. Aust., 2, 349–352.

    CAS  PubMed  Google Scholar 

  2. Mitchell, P. B., and Hadzi-Pavlovic, D. (2000) Lithium treatment for bipolar disorder, Bull. World Health Org., 78, 515–517.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Schou, M. (2001) Lithium treatment at 52, J. Affect. Disord., 67, 21–32.

    Article  CAS  PubMed  Google Scholar 

  4. Yildiz, A., Vieta, E., Leucht, S., and Baldessarini, R. J. (2011) Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials, Neuropsychopharmacology, 36, 375–389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., and Hennen, J. (2006) Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review, Bipolar Disord., 8, 625–639.

    Article  CAS  PubMed  Google Scholar 

  6. Berridge, M. J., Downes, C. P., and Hanley, M. R. (1989) Neural and developmental actions of lithium: a unifying hypothesis, Cell, 59, 411–419.

    Article  CAS  PubMed  Google Scholar 

  7. Harwood, A. J. (2005) Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited, Mol. Psychiatry, 10, 117–126.

    Article  CAS  PubMed  Google Scholar 

  8. Silverstone, P. H., McGrath, B. M., and Kim, H. (2005) Bipolar disorder and myoinositol: a review of the magnetic resonance spectroscopy findings, Bipolar Disord., 7, 1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Phiel, C. J., and Klein, P. S. (2001) Molecular targets of lithium action, Annu. Rev. Pharmacol. Toxicol., 41, 789–813.

    Article  CAS  PubMed  Google Scholar 

  10. Allison, J. H., and Stewart, M. A. (1971) Reduced brain inositol in lithium-treated rats, Nat. New Biol., 233, 267–268.

    Article  CAS  PubMed  Google Scholar 

  11. Haimovich, A., Eliav, U., and Goldbourt, A. (2012) Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR, J. Am. Chem. Soc., 134, 5647–5651.

    Article  CAS  PubMed  Google Scholar 

  12. Berridge, M. J., and Irvine, R. F. (1989) Inositol phosphates and cell signaling, Nature, 341, 197–205.

    Article  CAS  PubMed  Google Scholar 

  13. Manji, H. K., and Chen, G. (2002) PKC, MAP kinases and the bcl–2 family of proteins as long-term targets for mood stabilizers, Mol. Psychiatry, 7, S46–56.

    Article  CAS  PubMed  Google Scholar 

  14. Klein, P. S., and Melton, D. A. (1996) A molecular mechanism for the effect of lithium on development, Proc. Natl. Acad. Sci. USA, 93, 8455–8459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Stambolic, V., Ruel, L., and Woodgett, J. R. (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signaling in intact cells, Curr. Biol., 6, 1664–1668.

    Article  CAS  PubMed  Google Scholar 

  16. Sutherland, C., Leighton, I. A., and Cohen, P. (1993) Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth factor signaling, Biochem. J., 296 (Pt. 1), 15–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Lochhead, P. A., Kinstrie, R., Sibbet, G., Rawjee, T., Morrice, N., and Cleghon, V. (2006) A chaperone-dependent GSK3β transitional intermediate mediates activation-loop autophosphorylation, Mol. Cell, 24, 627–633.

    Article  CAS  PubMed  Google Scholar 

  18. Doble, B. W., and Woodgett, J. R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase, J. Cell Sci., 116, 1175–1186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ryves, W. J., and Harwood, A. J. (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium, Biochem. Biophys. Res. Commun., 280, 720–725.

    Article  CAS  PubMed  Google Scholar 

  20. Chiu, C. T., and Chuang, D. M. (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders, Pharmacol. Ther., 128, 281–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mora, A., Sabio, G., Risco, A. M., Cuenda, A., Alonso, J. C., Soler, G., and Centeno, F. (2002) Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A, Cell Signal., 14, 557–562.

    Article  CAS  PubMed  Google Scholar 

  22. Beaulieu, J. M., Marion, S., Rodriguiz, R. M., Medvedev, I. O., Sotnikova, T. D., Ghisi, V., Wetsel, W. C., Lefkowitz, R. J., Gainetdinov, R. R., and Caron, M. G. (2008) A β-arrestin 2 signaling complex mediates lithium action on behavior, Cell, 132, 125–136.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, F., Phiel, C. J., Spece, L., Gurvich, N., and Klein, P. S. (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3, J. Biol. Chem., 278, 33067–33077.

    Article  CAS  PubMed  Google Scholar 

  24. Freland, L., and Beaulieu, J. M. (2012) Inhibition of GSK3 by lithium, from single molecules to signaling networks, Front. Mol. Neurosci., 5, 14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mendes, C. T., Mury, F. B., de Sa Moreira, E., Alberto, F. L., Forlenza, O. V., Dias-Neto, E., and Gattaz, W. F. (2009) Lithium reduces Gsk3b mRNA levels: implications for Alzheimer disease, Eur. Arch. Psychiatry Clin. Neurosci., 259, 16–22.

    Article  PubMed  Google Scholar 

  26. Beaulieu, J. M., Sotnikova, T. D., Yao, W. D., Kockeritz, L., Woodgett, J. R., Gainetdinov, R. R., and Caron, M. G. (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade, Proc. Natl. Acad. Sci. USA, 101, 5099–5104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cole, A. R. (2013) Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia, FEBS J., 280, 5213–5227.

    Article  CAS  PubMed  Google Scholar 

  28. Jope, R. S. (1999) Anti-bipolar therapy: mechanism of action of lithium, Mol. Psychiatry, 4, 117–128.

    Article  CAS  PubMed  Google Scholar 

  29. Malhi, G. S., Tanious, M., Das, P., Coulston, C. M., and Berk, M. (2013) Potential mechanisms of action of lithium in bipolar disorder. Current understanding, CNS Drugs, 27, 135–153.

    Article  PubMed  Google Scholar 

  30. Dixon, J. F., and Hokin, L. E. (1998) Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex, Proc. Natl. Acad. Sci. USA, 7, 8363–8368.

    Article  Google Scholar 

  31. Berk, M., Kirchmann, N. H., and Butkow, N. (1996) Lithium blocks 45Ca2+ uptake into platelets in bipolar affective disorder and controls, Clin. Neuropharmacol., 19, 48–51.

    Article  CAS  PubMed  Google Scholar 

  32. Can, A., Schulze, T. G., and Gould, T. D. (2014) Molecular actions and clinical pharmacogenetics of lithium therapy, Pharmacol. Biochem. Behav., doi: 10.1016/j.pbb.2014.02.004.

  33. Brown, K. M., and Tracy, D. K. (2013) Lithium: the pharmacodynamic actions of the amazing ion, Ther. Adv. Psychopharmacol., 3, 163–176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Charney, D. S. (1998) Monoamine dysfunction and the pathophysiology and treatment of depression, J. Clin. Psychiatry, 59, 11–14.

    CAS  PubMed  Google Scholar 

  35. Li, X., Zhu, W., Roh, M. S., Friedman, A. B., Rosborough, K., and Jope, R. S. (2004) In vivo regulation of glycogen synthase kinase-3β (gsk3β) by serotoninergic activity in mouse brain, Neuropsychopharmacology, 29, 1426–1431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dunigan, C. D., and Shamoo, A. E. (1995) Li+ stimulates ATP-regulated dopamine uptake in PC12 cells, Neuroscience, 65, 1–4.

    Article  CAS  PubMed  Google Scholar 

  37. Scheuch, K., Holtje, M., Budde, H., Lautenschlager, M., Heinz, A., Ahnert-Hilger, G., and Priller, J. (2010) Lithium modulates tryptophan hydroxylase 2 gene expression and serotonin release in primary cultures of serotoninergic raphe neurons, Brain Res., 1307, 14–21.

    CAS  PubMed  Google Scholar 

  38. Carli, M., and Reader, T. A. (1997) Regulation of central serotonin transporters by chronic lithium: an autoradiographic study, Synapse, 27, 83–89.

    Article  CAS  PubMed  Google Scholar 

  39. Chuang, D. M., Chen, R. W., Chalecka-Franaszek, E., Ren, M., Hashimoto, R., Senatorov, V., Kanai, H., Hough, C., Hiroi, T., and Leeds, P. (2002) Neuroprotective effects of lithium in cultured cells and animal models of diseases, Bipolar Disord., 4, 129–136.

    Article  CAS  PubMed  Google Scholar 

  40. Manji, H. K., Moore, G. J., and Chen, G. (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry, 46, 929–940.

    Article  CAS  PubMed  Google Scholar 

  41. Ma, J., and Zhang, G. Y. (2003) Lithium reduced n-methyl-D-aspartate receptor subunit 2a tyrosine phosphorylation and its interactions with src and fyn mediated by psd-95 in rat hippocampus following cerebral ischemia, Neurosci. Lett., 348, 185–189.

    Article  CAS  PubMed  Google Scholar 

  42. Xu, J., Culman, J., Blume, A., Brecht, S., and Gohlke, P. (2003) Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death, Stroke, 34, 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  43. Bian, Q., Shi, T., Chuang, D. M., and Qian, Y. (2007) Lithium reduces ischemia-induced hippocampal ca1 damage and behavioral deficits in gerbils, Brain Res., 1184, 270–276.

    CAS  PubMed  Google Scholar 

  44. Chalecka-Franaszek, E., and Chuang, D. M. (1999) Lithium activates the serine/threonine kinase akt-1 and suppresses glutamate-induced inhibition of akt-1 activity in neurons, Proc. Natl. Acad. Sci. USA, 96, 8745–8750.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Roh, M. S., Eom, T. Y., Zmijewska, A. A., De Sarno, P., Roth, K. A., and Jope, R. S. (2005) Hypoxia activates glycogen synthase kinase-3 in mouse brain in vivo: protection by mood stabilizers and imipramine, Biol. Psychiatry, 57, 278–286.

    Article  CAS  PubMed  Google Scholar 

  46. Juhaszova, M., Zorov, D. B., Kim, S. H., Pepe, S., Fu, Q., Fishbein, K. W., Ziman, B. D., Wang, S., Ytrehus, K., Antos, C. L., Olson, E. N., and Sollott, S. J. (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535–1549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Terashima, Y., Sato, T., Yano, T., Maas, O., Itoh, T., Miki, T., Tanno, M., Kuno, A., Shimamoto, K., and Miura, T. (2010) Roles of phospho-gsk-3β in myocardial protection afforded by activation of the mitochondrial K ATP channel, J. Mol. Cell Cardiol., 49, 762–770.

    Article  CAS  PubMed  Google Scholar 

  48. Faghihi, M., Mirershadi, F., Dehpour, A. R., and Bazargan, M. (2008) Preconditioning with acute and chronic lithium administration reduces ischemia/reperfusion injury mediated by cyclooxygenase not nitric oxide synthase pathway in isolated rat heart, Eur. J. Pharmacol., 597, 57–63.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez Arbelaez, L. F., Perez Nunez, I. A., and Mosca, S. M. (2013) Gsk-3β inhibitors mimic the cardioprotection mediated by ischemic pre- and postconditioning in hypertensive rats, Biomed. Res. Int., 2013, 317456.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Yadav, H. N., Singh, M., and Sharma, P. L. (2010) Modulation of the cardioprotective effect of ischemic preconditioning in hyperlipidaemic rat heart, Eur. J. Pharmacol., 643, 78–83.

    Article  CAS  PubMed  Google Scholar 

  51. Plotnikov, E. Y., Kazachenko, A. V., Vyssokikh, M. Y., Vasileva, A. K., Tcvirkun, D. V., Isaev, N. K., Kirpatovsky, V. I., and Zorov, D. B. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 72, 1493–1502.

    Article  CAS  PubMed  Google Scholar 

  52. Vasil’eva, A. K., Plotnikov, E. Y., Kazachenko, A. V., Kirpatovsky, V. I., and Zorov, D. B. (2010) GSK-3β inhibition decreases ischemia-induced kidney cell death, Byul. Eksp. Biol. Med., 149, 276–281.

    Article  Google Scholar 

  53. Talab, S. S., Emami, H., Elmi, A., Nezami, B. G., Assa, S., Deroee, A. F., Daneshmand, A., Tavangar, S. M., and Dehpour, A. R. (2010) Chronic lithium treatment protects the rat kidney against ischemia/reperfusion injury: the role of nitric oxide and cyclooxygenase pathways, Eur. J. Pharmacol., 647, 171–177.

    Article  CAS  PubMed  Google Scholar 

  54. Plotnikov, E. Y., Grebenchikov, O. A., Babenko, V. A., Pevzner, I. B., Zorova, L. D., Likhvantsev, V. V., and Zorov, D. B. (2013) Nephroprotective effect of gsk-3β inhibition by lithium ions and δ-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity, Toxicol. Lett., 220, 303–308.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y., Huang, W. C., Wang, C. Y., Tsai, C. C., Chen, C. L., Chang, Y. T., Kai, J. I., and Lin, C. F. (2009) Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis, Br. J. Pharmacol., 157, 1004–1013.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Zorov, D. B., Sukhikh, G. T., Plotnikov, Ye. Yu., Kirpatovsky, V. I., Kazachenko, A. V., Isaev, N. K., Khryapenkova, T. G., Visilieva, A. K., Zorova, L. D., Pevzner, I. B., and Marey, M. V. (2010) The use of lithium salts for the treatment of acute renal failure, Russian Federtion Patent 2409373.

    Google Scholar 

  57. Liu, A., Fang, H., Dahmen, U., and Dirsch, O. (2013) Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats, Liver Transpl., 19, 762–772.

    Article  PubMed  Google Scholar 

  58. Patel, S., Doble, B., and Woodgett, J. R. (2004) Glycogen synthase kinase-3 in insulin and wnt signaling: a double-edged sword? Biochem. Soc. Trans., 32, 803–808.

    Article  CAS  PubMed  Google Scholar 

  59. Hill, E. J., Nagel, D. A., O’Neil, J. D., Torr, E., Woehrling, E. K., Devitt, A., and Coleman, M. D. (2013) Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development, PLoS One, 8, e58822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Huo, K., Sun, Y., Li, H., Du, X., Wang, X., Karlsson, N., Zhu, C., and Blomgren, K. (2012) Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain, Mol. Cell Neurosci., 51, 32–42.

    Article  CAS  PubMed  Google Scholar 

  61. Li, H., Li, Q., Du, X., Sun, Y., Wang, X., Kroemer, G., Blomgren, K., and Zhu, C. (2011) Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells, J. Cereb. Blood Flow Metab., 31, 2106–2115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Petrini, M., and Azzara, A. (2012) Lithium in the treatment of neutropenia, Curr. Opin. Hematol., 19, 52–57.

    Article  CAS  PubMed  Google Scholar 

  63. Walasek, M. A., Bystrykh, L., van den Boom, V., Olthof, S., Ausema, A., Ritsema, M., Huls, G., de Haan, G., and van Os, R. (2012) The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation, Blood, 119, 3050–3059.

    Article  CAS  PubMed  Google Scholar 

  64. Eslaminejad, M. B., Karimi, N., and Shahhoseini, M. (2013) Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors, Histochem. Cell Biol., 140, 623–633.

    Article  CAS  PubMed  Google Scholar 

  65. Kim, J. H., Liu, X., Wang, J., Chen, X., Zhang, H., Kim, S. H., Cui, J., Li, R., Zhang, W., Kong, Y., Zhang, J., Shui, W., Lamplot, J., Rogers, M. R., Zhao, C., Wang, N., Rajan, P., Tomal, J., Statz, J., Wu, N., Luu, H. H., Haydon, R. C., and He, T. C. (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases, Ther. Adv. Musculoskelet. Dis., 5, 13–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Satija, N. K., Sharma, D., Afrin, F., Tripathi, R. P., and Gangenahalli, G. (2013) High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage, PLoS One, 8, e55769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Trowbridge, J. J., Xenocostas, A., Moon, R. T., and Bhatia, M. (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation, Nat. Med., 12, 89–98.

    Article  CAS  PubMed  Google Scholar 

  68. Huang, J., Nguyen-McCarty, M., Hexner, E. O., Danet-Desnoyers, G., and Klein, P. S. (2012) Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways, Nat. Med., 18, 1778–1785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tsai, L. K., Wang, Z., Munasinghe, J., Leng, Y., Leeds, P., and Chuang, D. M. (2011) Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model, Stroke, 42, 2932–2939.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Plotnikov, E. Y., Pulkova, N. V., Pevzner, I. B., Zorova, L. D., Silachev, D. N., Morosanova, M. A., Sukhikh, G. T., and Zorov, D. B. (2013) Inflammatory pre-conditioning of mesenchymal multipotent stromal cells improves their immunomodulatory potency in acute pyelonephritis in rats, Cytotherapy, 15, 679–689.

    Article  CAS  PubMed  Google Scholar 

  71. Alessandri, A. L., Sousa, L. P., Lucas, C. D., Rossi, A. G., Pinho, V., and Teixeira, M. M. (2013) Resolution of inflammation: mechanisms and opportunity for drug development, Pharmacol. Ther., 139, 189–212.

    Article  CAS  PubMed  Google Scholar 

  72. Beurel, E., Michalek, S. M., and Jope, R. S. (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3), Trends Immunol., 31, 24–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Rapaport, M. H., and Manji, H. K. (2001) The effects of lithium on ex vivo cytokine production, Biol. Psychiatry, 50, 217–224.

    Article  CAS  PubMed  Google Scholar 

  74. Knijff, E. M., Breunis, M. N., Kupka, R. W., de Wit, H. J., Ruwhof, C., Akkerhuis, G. W., Nolen, W. A., and Drexhage, H. A. (2007) An imbalance in the production of IL-1β and IL-6 by monocytes of bipolar patients: restoration by lithium treatment, Bipolar Disord., 9, 743–753.

    Article  CAS  PubMed  Google Scholar 

  75. Tickenbrock, L., Schwable, J., Strey, A., Sargin, B., Hehn, S., Baas, M., Choudhary, C., Gerke, V., Berdel, W. E., Muller-Tidow, C., and Serve, H. (2006) Wnt signaling regulates transendothelial migration of monocytes, J. Leukoc. Biol., 79, 1306–1313.

    Article  CAS  PubMed  Google Scholar 

  76. Yu, F., Wang, Z., Tchantchou, F., Chiu, C. T., Zhang, Y., and Chuang, D. M. (2012) Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury, J. Neurotrauma, 29, 362–374.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Hofmann, C., Dunger, N., Scholmerich, J., Falk, W., and Obermeier, F. (2010) Glycogen synthase kinase 3β: a master regulator of toll-like receptor-mediated chronic intestinal inflammation, Inflamm. Bowel Dis., 16, 1850–1858.

    Article  PubMed  Google Scholar 

  78. Albayrak, A., Halici, Z., Polat, B., Karakus, E., Cadirci, E., Bayir, Y., Kunak, S., Karcioglu, S. S., Yigit, S., Unal, D., and Atamanalp, S. S. (2013) Protective effects of lithium: a new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis, Int. Immunopharmacol., 16, 35–40.

    Article  CAS  PubMed  Google Scholar 

  79. Bertsch, S., Lang, C. H., and Vary, T. C. (2011) Inhibition of glycogen synthase kinase 3β activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover, Shock, 35, 266–274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Nahman, S., Belmaker, R. H., and Azab, A. N. (2012) Effects of lithium on lipopolysaccharide-induced inflammation in rat primary glia cells, Innate Immun., 18, 447–458.

    Article  CAS  PubMed  Google Scholar 

  81. Malhi, G. S., Adams, D., and Berk, M. (2009) Is lithium in a class of its own? A brief profile of its clinical use, Aust. NZ J. Psychiatry, 43, 1096–1104.

    Article  Google Scholar 

  82. McKnight, R. F., Adida, M., Budge, K., Stockton, S., Goodwin, G. M., and Geddes, J. R. (2012) Lithium toxicity profile: a systematic review and meta-analysis, Lancet, 379, 721–728.

    Article  CAS  PubMed  Google Scholar 

  83. Pilcher, H. R. (2003) Drug research: the ups and downs of lithium, Nature, 425, 118–120.

    Article  CAS  PubMed  Google Scholar 

  84. Tredget, J., Kirov, A., and Kirov, G. (2010) Effects of chronic lithium treatment on renal function, J. Affect. Disord., 126, 436–440.

    Article  CAS  PubMed  Google Scholar 

  85. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G., and Levey, A. S. (2003) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey, Am. J. Kidney Dis., 41, 1–12.

    Article  PubMed  Google Scholar 

  86. Coppen, A., Abou-Saleh, M., Milln, P., Bailey, J., and Wood, K. (1983) Decreasing lithium dosage reduces morbidity and side-effects during prophylaxis, J. Affect. Disord., 5, 353–362.

    Article  CAS  PubMed  Google Scholar 

  87. Khasraw, M., Ashley, D., Wheeler, G., and Berk, M. (2012) Using lithium as a neuroprotective agent in patients with cancer, BMC Med., 10, 131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kishore, B. K., and Ecelbarger, C. M. (2013) Lithium: a versatile tool for understanding renal physiology, Am. J. Physiol. Renal. Physiol., 304, F1139–1149; doi: 10.1152/ajprenal.00718.2012; Epub 2013 Feb 13.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Chiu, C. T., Wang, Z., Hunsberger, J. G., and Chuang, D. M. (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder, Pharmacol. Rev., 65, 105–142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Y. Plotnikov or D. B. Zorov.

Additional information

Original Russian Text © E. Y. Plotnikov, D. N. Silachev, L. D. Zorova, I. B. Pevzner, S. S. Jankauskas, S. D. Zorov, V. A. Babenko, M. V. Skulachev, D. B. Zorov, 2014, published in Biokhimiya, 2014, Vol. 79, No. 8, pp. 932–943.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, E.Y., Silachev, D.N., Zorova, L.D. et al. Lithium salts — Simple but magic. Biochemistry Moscow 79, 740–749 (2014). https://doi.org/10.1134/S0006297914080021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914080021

Key words

Navigation