Skip to main content

Advertisement

Log in

Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A study of the cartilage differentiation of mesenchymal stem cells (MSCs) would be of particular interest since one strategy for cell-based treatment of cartilage defects emphasizes the use of cells that are in a differentiated state. The present study has attempted to evaluate the effects of two well-known glycogen synthase kinase-3 inhibitors, including lithium chloride (LiCl) and SB216763 on a human marrow-derived MSC (hMSC) chondrogenic culture. Passaged-3 MSCs were condensed into small pellets and cultivated in the following groups based on the supplementation of chondrogenic medium: transforming growth factor (TGF)-β1, TGF-β1 + LiCl, TGF-β1 + SB216763, TGF-β3, TGF-β3 + LiCl, and TGF-β3 + SB216763. The cultures were maintained for 21 days and then analyzed for expression of Sox9, aggrecan, collagen II, β-catenin, and axin genes. Deposition of glycosaminoglycan (GAG) in the cartilage matrix was also measured for certain cultures. The presence of both LiCl and SB216763 along with TGF-β in the MSC chondrogenic culture led to the up-regulation of cartilage-specific genes. TGF-β3 appeared much better than TGF-β1. Based on our findings, SB216763 was more effective in up-regulation of cartilage-specific genes. These chondrogenic effects appeared to be mediated through the Wnt signaling pathway since β-catenin and axin tended to be up-regulated and down-regulated, respectively. In the culture with SB216763 + TGF-β3, significantly more GAG was deposited (P < 0.05). In conclusion, addition of either SB216763 or LiCl to hMSC chondrogenic culture up-regulates cartilage-specific gene expression and enhances GAG deposition in the culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  PubMed  CAS  Google Scholar 

  • Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20:182–187

    Article  PubMed  CAS  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, Kadosawa T, Fujinaga T (2004) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet culture system. Exp Hematol 32:502–509

    Article  PubMed  CAS  Google Scholar 

  • Brighton CT, Sugioka Y, Hunt RM (1973) Cytoplasmic structures of the epiphyseal plate chondrocytes: quantitative evaluation using electron micrographs of rat costochondral junctions with special reference to the fate of hypertrophic cells. J Bone Joint Surg 55A:771–1973

    Google Scholar 

  • Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7:793–803

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2003a) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31:1114–1124

    Article  PubMed  Google Scholar 

  • Darling EM, Athanasiou KA (2003b) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9:9–26

    Article  PubMed  CAS  Google Scholar 

  • de Boer J, Wang HJ, Van Blitterswijk C (2004a) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401

    Article  PubMed  Google Scholar 

  • de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C (2004b) Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34:818–826

    Article  PubMed  Google Scholar 

  • Eslaminejad MB, Nikmahzar A, Piriea A (2006a) The structure of human mesenchymal stem cells differentiated into cartilage in micro mass culture system. Yakhteh Med J 3:162–171

    Google Scholar 

  • Eslaminejad MB, Nikmahzar A, Thagiyar L, Nadri S, Massumi M (2006b) Murine mesenchymal stem cells isolated by low density primary culture system. Dev Growth Diff 48:361–370

    Article  CAS  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  CAS  Google Scholar 

  • Gurvich N, Klein PS (2002) Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol Ther 96:45–66

    Article  PubMed  CAS  Google Scholar 

  • Horton WE, Yagi R, Laverty D, Weiner S (2005) Overview of studies comparing human normal cartilage with minimal and advanced osteoarthritic cartilage. Clin Exp Rheumatol 23:103–112

    PubMed  Google Scholar 

  • Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6:714–727

    Article  PubMed  CAS  Google Scholar 

  • Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914–919

    Article  PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:65–72

    Article  Google Scholar 

  • Kapadia RM, Guntur AR, Reinhold MI, Naski MC (2005) Glycogen synthase kinase 3 controls endochondral bone development: contribution of fibroblast growth factor 18. Dev Biol 285:496–507

    Article  PubMed  CAS  Google Scholar 

  • Kawata K, Kubota S, Eguchi T, Moritani NH, Shimo T, Kondo S, Nishida T, Minagi S, Takigawa M (2010) Role of the low-density lipoprotein receptor-related protein-1 in regulation of chondrocyte differentiation. J Cell Physiol 222:138–148

    Article  PubMed  CAS  Google Scholar 

  • Kirton JP, Crofts NJ, George SJ, Brennan K, Canfield AE (2007) Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res 101:581–589

    Article  PubMed  CAS  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA (2009) Articular chondrocytes express connexin 43 hemichannels and P2 receptors: a putative mechanoreceptor complex involving the primary cilium? J Anat 214:275–283

    Article  PubMed  CAS  Google Scholar 

  • Letamendia A, Labbé E, Attisano L (2001) Transcriptional regulation by Smads: crosstalk between the TGF-beta and Wnt pathways. J Bone Joint Surg Am 83:31–39

    Google Scholar 

  • Lu XL, Mow VC (2008) Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc 40:193–199

    Article  PubMed  Google Scholar 

  • Mandelbaum B, Waddell D (2005) Etiology and pathophysiology of osteoarthritis. Orthopedics 28:s207–s214

    PubMed  Google Scholar 

  • Miyoshi K, Kasahara K, Miyazaki I, Asanuma M (2009) Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun 388:757–762

    Article  PubMed  CAS  Google Scholar 

  • Mwale F, Girard-Lauriault PL, Wang HT, Lerouge S, Antoniou J, Wertheimer MR (2006a) Suppression of genes related to hypertrophy and osteogenesis in committed human mesenchymal stem cells cultured on novel nitrogen-rich plasma polymer coatings. Tissue Eng 12:2639–2647

    Article  PubMed  CAS  Google Scholar 

  • Mwale F, Stachura D, Roughley P, Antoniou J (2006b) Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res 24:1791–1798

    Article  PubMed  CAS  Google Scholar 

  • Nemoto T, Kanai T, Yanagita T, Satoh S, Maruta T, Yoshikawa N, Kobayashi H, Wada A (2008) Regulation of Akt mRNA and protein levels by glycogen synthase kinase-3beta in adrenal chromaffin cells: effects of LiCl and SB216763. Eur J Pharmacol 586:82–89

    Article  PubMed  CAS  Google Scholar 

  • Neth P, Ciccarella M, Egea V, Hoelters J, Jochum M, Ries C (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24:1892–1903

    Article  PubMed  CAS  Google Scholar 

  • Nöth UM, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4:371–380

    PubMed  Google Scholar 

  • Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, van der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res 315:2802–2817

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A (2008) Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 30:121–127

    Article  PubMed  CAS  Google Scholar 

  • Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stemcells for nonhematopoietic tissue. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  PubMed  CAS  Google Scholar 

  • Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10:62–70

    Article  PubMed  CAS  Google Scholar 

  • Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36:539–568

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99:4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Bio 6:1664–1668

    Article  CAS  Google Scholar 

  • Stefan H, Claire LK (2007) Wnt signalling: variety at the core. J Cell Sci 120:385–393

    Article  Google Scholar 

  • Tapp H, Deepe R, Ingram JA, Kuremsky M, Hanley EN Jr, Gruber HE (2008) Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix. Arthritis Res Ther 10:R89

    Article  PubMed  Google Scholar 

  • Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19:738–749

    Article  PubMed  CAS  Google Scholar 

  • Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80:1745–1757

    PubMed  CAS  Google Scholar 

  • Yoshino JE, DeVries GH (1987) Effect of lithium on Schwann cell proliferation stimulated by axolemma- and myelin-enriched fractions. J Neurochem 48:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Eid K, Glowacki J (2004) Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 19:463–470

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to Royan deputy of research for providing the financial support in order to conduct this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Baghaban Eslaminejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslaminejad, M.B., Karimi, N. & Shahhoseini, M. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors. Histochem Cell Biol 140, 623–633 (2013). https://doi.org/10.1007/s00418-013-1121-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1121-x

Keywords

Navigation