Skip to main content
Log in

Predictive Control of Investment Portfolio on the Financial Market with Hidden Regime Switching and MS VAR Model of Returns

  • CONTROL IN SOCIAL ECONOMIC SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the problem of managing an investment portfolio in the financial market with switching of regimes taking into account constraints on the volume of investments and loans. It is assumed that the returns on risky assets are described by a vector autoregressive model with hidden regime switching (Markov Switching Vector Autoregression, MS VAR). The EM algorithm is used to estimate the parameters. The results of numerical modeling using real data of the Russian stock market are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Costa, O.L.V. and Araujo, M.V., A generalized multi-period portfolio optimization with Markov switching parameters, Automatica, 2008, vol. 44, no. 10, pp. 2487–2497. https://doi.org/10.1016/j.automatica.2008.02.014

    Article  MathSciNet  Google Scholar 

  2. Bäuerle, N. and Rieder, U., Portfolio optimization with Markov-modulated stock prices and interest rates, IEEE Trans. Autom. Control, 2004, vol. 49, no. 3, pp. 442–447. https://doi.org/10.1109/TAC.2004.824471

    Article  MathSciNet  Google Scholar 

  3. Sotomayor, L.R. and Cadenillas, A., Explicit solutions of consumption-investment problems in financial markets with regime switching, Math. Finance, 2009, vol. 19, no. 2, pp. 251–279. https://doi.org/10.1111/j.1467-9965.2009.00366.x

    Article  MathSciNet  Google Scholar 

  4. Wu, H., Mean-variance portfolio selection with a stochastic cash flow in a Markov-switching jump-diffusion market, J. Optim. Theory Appl., 2013, vol. 158, pp. 918–934. https://doi.org/10.1007/s10957-013-0292-x

    Article  MathSciNet  Google Scholar 

  5. Levy, M. and Kaplanski, G., Portfolio selection in two–regime world, Eur. J. Oper. Res., 2015, vol. 241, pp. 514–524. https://doi.org/10.1016/j.ejor.2014.10.012

    Article  MathSciNet  Google Scholar 

  6. Dombrovskii, V.V., Obyedko, T.Yu., and Samorodova, M., Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions, Automatica, 2018, vol. 87, no. 1, pp. 61–68. https://doi.org/10.1016/j.automatica.2017.09.018

    Article  MathSciNet  Google Scholar 

  7. Dombrovskii, V. and Pashinskaya, T., Model predictive control design for constrained Markov jump bilinear stochastic systems with an application in finance, Int. J. Syst. Sci., 2020, vol. 51, no. 16, pp. 3269–3284. https://doi.org/10.1080/00207721.2020.1814892

    Article  MathSciNet  Google Scholar 

  8. Ishijima, H. and Uchida, M., Log mean-variance portfolio selection under regime switching, Asia-Pac. Financ. Mark., 2011, vol. 18, no. 2, pp. 213–229. https://doi.org/10.1007/s10690-010-9132-2

    Article  Google Scholar 

  9. Nystrup, P., Boyd, S., Lindström, E., and Madsen, H., Multi-period portfolio selection with drawdown control, Ann. Oper. Res., 2018, pp. 1–27. https://doi.org/10.1007/s10479-018-2947-3

  10. Krolzig, H.-M., Markov Switching Vector Autoregressions. Modelling, Statistical Inference, and Application to Business Cycle Analysis, Berlin: Springer, 1997. https://doi.org/10.1007/978-3-642-51684-9

    MATH  Google Scholar 

  11. Dombrovskii, V.V., Dombrovskii, D.V., and Lyashenko, E.A., Investment portfolio optimization with transaction costs and constraints using model predictive control, Proc. 8th Russ.-Korean Int. Symp. Sci. Technol. (Tomsk, 2004), Tomsk: Tomsk Polytech. Univ., 2004, pp. 202–205. https://doi.org/10.1109/KORUS.2004.1555724

  12. Elliott, R.J., Aggoun, L., and Moore, J.B., Hidden Markov Models: Estimation and Control, Berlin–Heidelberg–New York: Springer, 1995. https://doi.org/10.1007/978-0-387-84854-9

    MATH  Google Scholar 

  13. Holst, U., Lindgren, G., Holst, J., and Thuvesholmen, M., Recursive estimation in switching autoregressions with Markov regime, J. Time Series Anal., 1994, vol. 15, no. 5, pp. 489–506. https://doi.org/10.1111/j.1467-9892.1994.tb00206.x

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Yu. Pashinskaya or V. V. Dombrovskii.

Additional information

Translated by V. Potapchouck

APPENDIX

Proof of the Theorem. The proof algorithm is based on the results obtained in [7]. Using the smoothing property of the conditional expectation, the criterion (2.20) can be represented in the form

$$ \eqalign {&J(k+m|k)\cr &\quad {}=E\Bigg \{V^{2} (k+1|k)R_{1} (k\!+\!1)-R_{2} (k\!+\!1)V(k\!+\!1|k)+u^{\mathrm {T}} (k|k)R(k\!+\!1)u(k|k) \cr &\quad \quad {}+E\bigg \{V^{2} (k\!+\!2|k)R_{1} (k\!+\!2)- R_{2}(k+2)V(k\!+\!2|k)+u^{\mathrm {T}} (k\!+\!1|k)R(k\!+\!2)u(k\!+\!1|k)+\ldots \cr &\quad \quad \quad {}+E\Big \{V^{2} (k+m|k)R_{1} (k\!+\!m)-R_{2}(k+m)V(k\!+\!m|k)\cr &\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad {}+u^{\mathrm {T}} (k\!+\!m\!-\!1|k) R(k\!+\!m)u(k\!+\!m\!-\!1|k)\cr &\quad \quad \quad \quad \quad \quad {}|\thinspace V(k\!+\!m-1),\theta (k\!+\!m\!-\!1)\Big \}\ldots |V(k\!+\!1),\theta (k\!+\!1)\bigg \} \ldots |V(k),\theta (k)\Bigg \}.}$$
(A.1)

Using (2.8)–(2.10), (2.11)–(2.14), and (2.7), we obtain

$$ \begin {gathered} \begin {aligned} &V(k+m-t\thinspace |\thinspace k) \\ &{} =\sum _{i_{m-t} =1}^{\nu }e_{i_{m-t} } \big [P\theta (k + m - t - 1) + \upsilon (k + m - t)\big ] \bigg [A^{(i_{m-t} )} V(k + m - t - 1\thinspace |\thinspace k) \\ &\enspace \enspace {}+\Big (B\left [\gamma ^{(i_{m-t} )} Y(k+m-t-1)+\sigma ^{(i_{m-t} )} W(k+m-t)\right ]+D^{(i_{m-t} )} \Big )u(k+m-t-1\thinspace |\thinspace k)\bigg ],\\ \end {aligned} \\ t={1,\ldots ,m -1 }.\end {gathered}$$
(A.2)

The successive calculation of the expectations in (A.1) with allowance for (A.2) and with the replacement of the parameters by their estimates (3.1)–(3.3) leads to the expression

$$ \begin {aligned} J(k+m\thinspace |\thinspace k)&=V^{2} (k)\sum _{i_{1} =1}^{\nu }\left (A^{(i_{1} )} \right )^{2} Q^{(i_{1} )} (k) -\sum _{i_{1} =1}^{\nu }Q_{2}^{(i_{1} )} (k)A^{(i_{1} )} V(k) \\ &\quad {}+\big [2V(k)G(k)-F(k)\big ]U(k)+U^{\mathrm {T}} (k)H(k)U(k), \end {aligned} $$
(A.3)
the matrices \(G(k) \), \(F(k) \), and \(H(k) \) have the form (4.3)–(4.7), and the matrices \( Q^{(i_{t} )} (k)\), \(Q^{(i_{t},\ldots ,i_{s} )} (k) \), \(Q_{2}^{(i_{1} )} (k) \), and \(Q_{2}^{(i_{s} ,\ldots ,i_{s} )}(k)\) have the form (4.8)–(4.13). It is obvious that the problem of minimizing criterion (A.3) under constraints (2.17) is equivalent to the problem of minimizing criterion (4.1) where the terms independent of controls have been deleted under constraints (4.2). The proof of the Theorem is complete. \(\quad \blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashinskaya, T.Y., Dombrovskii, V.V. Predictive Control of Investment Portfolio on the Financial Market with Hidden Regime Switching and MS VAR Model of Returns. Autom Remote Control 82, 841–852 (2021). https://doi.org/10.1134/S0005117921050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921050088

Keywords

Navigation