Skip to main content
Log in

Robust Estimation Based on the Least Absolute Deviations Method and the Kalman Filter

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a new approach for solving the filtering problem in linear systems based on incomplete measurements, where the characteristics of the dynamic noise are not known exactly, and measurements may contain anomalous non-Gaussian errors. The proposed algorithm is based on the idea of using the adaptive Kalman filter and the generalized least absolute deviations method jointly. With numerical modeling, we show that, compared to the classical optimal linear filtering method, our solution has lower sensitivity to short-term outliers in measurements and provides a quick adjustment of the parameters of the system dynamics. The proposed algorithm can be used to solve onboard navigation and tracking problems on aircrafts. To implement the method of least absolute deviations, we use an efficient L1-optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liptser, R. Sh & Shiryaev, A. N. Statistika sluchainykh protsessov (Statistics of Random Processes). (Nauka, Moscow, 1974).

    Google Scholar 

  2. Sinitsyn, I. N. Filatry Kalmana i Pugacheva (Kalman and Pugachev Filters). (Logos, Moscow, 2006).

    Google Scholar 

  3. Miller, A.B. and Miller, B.M.Tracking of the UAV Trajectory on the Basis of Bearing-Only Observations, 53rd IEEE Conf. on Decision and Control, Los Angeles, 2014, pp. 4178–4184.

  4. Salychev, O. S. Mems-based Inertial Navigation: Expectations and Reality. (Bauman Moscow State Technical University, Moscow, 2012).

    Google Scholar 

  5. Vremeenko, K. K., Zheltov, S. Yu, Kim, N. V., Kozorez, D. A., Krasil’shchikov, M. N., Sebryakov, G. G., Sypalo, K. I. & Chernomorskii, A. I. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatelanykh apparatov (Modern Information Technologies in Navigation and Tracking Problems for Unmanned Maneuverable Aerial Vehicles). (Fizmatlit, Moscow, 2009).

    Google Scholar 

  6. Lainiotis, D. Optimal Adaptive Estimation: Structure and Parameter Adaption. IEEE Trans. Autom. Control no. 16, 160–170 (1971).

    Article  MathSciNet  Google Scholar 

  7. Yang, Y. & Gao, W. An Optimal Adaptive Kalman Filter. J. Geodesy no. 80, 177–183 (2006).

    Article  Google Scholar 

  8. Mohamed, A. H. & Schwarz, K. P. Adaptive Kalman Filtering for INS/GPS. J. Geodesy no. 73, 193–203 (1999).

    Article  Google Scholar 

  9. Reina, G., Vargas, A., Nagatani, K., and Yoshida, K.Adaptive Kalman Filtering for GPS-based Mobile Robot Localization, Int. Workshop on Safety, Security and Rescue Robotics, Rome, Italy, September 2007.

  10. Bosov, A. V. & Pankov, A. R. Robust Recurrent Estimations of Processes in Stochastic Systems. Autom. Remote Control 53(no. 9), 1395–1402 (1992).

    MathSciNet  Google Scholar 

  11. Koch, K. R. & Yang, Y. Robust Kalman Filter for Rank Deficient Observation Models. J. Geodesy no. 72, 436–441 (1998).

    Article  Google Scholar 

  12. Chang, Guobin & Liu, Ming M-estimator-based Robust Kalman Filter for Systems with Process Modeling Errors and Rank Deficient Measurement Models. Nonlin. Dynam. no. 80, 1431–1449 (2015).

    Article  MathSciNet  Google Scholar 

  13. Cao, L., Qiao, D., and Chen, X.Laplace L1 Huber Based Cubature Kalman Filter for Attitude Estimation of Small Satellite, Acta Astronaut., 2018, vol. 148. https://doi.org/10.1016/j.actaastro.2018.04.020

  14. Huber, P. J. Robust Statistics. (Wiley, New York, 1981).

    Book  Google Scholar 

  15. Armstrong, R. D. & Frome, E. L. A Comparison of Two Algorithms for Absolute Deviation Curve Fitting. J. Am. Statist. Association 71(354), 328–330 (1976).

    Article  Google Scholar 

  16. Maybeck, P.S.Stochastic Models, Estimation, and Control, New York: Academic, 1982, vol. 2, pp. 70–129.

  17. Kotz, S., Kozubowski, T. J. & Podgorski, K. The Laplace Distribution and Generalizations. (Springer, New York, 2001).

    Book  Google Scholar 

  18. Barrodale, I. & Roberts, F. An Improved Algorithm for Discrete L1 Linear Approximation. SIAM J. Numer. Anal. no. 10, 839–848 (1973).

    Article  Google Scholar 

  19. Abdelmalek, NabihN. On the Discrete Linear L1 Approximation and L1 Solutions of Overdetermined Linear Equations. J. Approx. Theory no. 11, 38–53 (1974).

    Article  Google Scholar 

  20. Abdelmalek, NabihN. An Efficient Method for the Discrete Linear L1 Approximation Problem. Math. Comput. 29(no. 131), 844–850 (1975).

    MATH  Google Scholar 

  21. Hogben, L. Handbook of Linear Algebra. 2nd ed (CRC Press, Boca Raton, 2013).

    Book  Google Scholar 

  22. Teunissen, P. J. G. Distributional Theory for the DIA Method. J. Geodesy 92, 59–80 (2018).

    Article  Google Scholar 

  23. Xu, Changhui, Rui, Xiaoping, Song, Xianfeng & Gao, Jingxiang Generalized Reliability Measures of Kalman Filtering for Precise Point Positioning. J. Syst. Eng. Electron. 24(no. 4), 699–705 (2013).

    Article  Google Scholar 

  24. Seo, Seong-Hun, Jee, Gyu-In, Byung-Hyun, Lee, Sung-Hyuck, Im and Kwan-Sung, KimHypothesis Test for Spoofing Signal Identification using Variance of Tangent Angle of Baseline Vector Components, Proc. 30th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, September 2017, pp. 1229–1240.

  25. Julier, S.J., Uhlmann, J.K., and Durrant-Whyte, H.F.A New Approach for Filtering Nonlinear Systems, Proc. IEEE Am. Control Conf., 1995, pp. 1628–1632.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, B., Kolosov, K. Robust Estimation Based on the Least Absolute Deviations Method and the Kalman Filter. Autom Remote Control 81, 1994–2010 (2020). https://doi.org/10.1134/S0005117920110041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920110041

Keywords

Navigation