Skip to main content
Log in

Compensating for a multisinusoidal disturbance based on Youla–Kucera parametrization

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the problem of compensation for a multisinusoidal disturbance for a linear stationary system with a given nominal control law. We consider the general structure of a controller that lets one use arbitrary algorithms for identification of disturbance parameters satisfying certain assumptions. The proposed structure is based on the Youla–Kucera parametrization and lets one compensate for a disturbance while preserving nominal behavior of a control system with respect to the reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veremey, E. and Sotnikova, M., Optimal Filtering Correction for Marine Dynamical Positioning Control System, J. Mar. Sci. Appl., 2016, vol. 15, no. 4, pp. 452–462.

    Article  Google Scholar 

  2. Belleter, D.J.W., Breu, D.A., Fossen, T.I., and Nijmeijer, H., A Globally k-Exponentially Stable Nonlinear Observer for the Wave Encounter Frequency, IFAC Proc. Volumes, 2013, vol. 46, no. 33, pp. 209–214.

    Article  Google Scholar 

  3. Alcorta-Garcia, E., Zolghadri, A., and Goupil, P., A Nonlinear Observer-Based Strategy for Aircraft Oscillatory Failure Detection: A380 Case Study, IEEE Trans. Aerospace Electron. Syst., 2011, vol. 47, no. 4, pp. 2792–2806.

    Article  Google Scholar 

  4. Chen, X. and Tomizuka, M., A Minimum Parameter Adaptive Approach for Rejecting Multiple Narrow-Band Disturbances with Application to Hard Disk Drives, IEEE Trans. Control Syst. Technol., 2012, vol. 20, no. 2, pp. 408–415.

    Article  Google Scholar 

  5. Landau, I., Alma, M., Constantinescu, A., Martinez, J., and Noë, M., Adaptive Regulation-Rejection of Unknown Multiple Narrow Band Disturbances (A Review on Algorithms and Applications), Control Eng. Practice, 2011, vol. 19, no. 10, pp. 1168–1181.

    Article  Google Scholar 

  6. Francis, B. and Wonham, M., The Internal Model Principle of Control Theory, Automatica, 1976, vol. 12, no. 5, pp. 457–465.

    Article  MathSciNet  MATH  Google Scholar 

  7. Serrani, A., Isidori, A., and Marconi, L., Semi-Global Nonlinear Output Regulation with Adaptive Internal Model, IEEE Trans. Autom. Control, 2001, vol. 46, no. 8, pp. 1178–1194.

    Article  MATH  Google Scholar 

  8. Bresch-Pietri, D. and Krstic, M., Adaptive Trajectory Tracking Despite Unknown Input Delay and Plant Parameters, Automatica, 2009, vol. 45, no. 9, pp. 2074–2081.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nikiforov, V., Adaptive Non-Linear Tracking with Complete Compensation of Unknown Disturbances, Eur. J. Control, 1998, vol. 4, no. 2, pp. 132–139.

    Article  MATH  Google Scholar 

  10. Aranovskiy, S. and Freidovich, L., Adaptive Compensation of Disturbances Formed as Sums of Sinusoidal Signals with Application to an Active Vibration Control Benchmark, Eur. J. Control, 2013, vol. 19, no. 4, pp. 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  11. Aranovskiy, S., Bobtsov, A., Pyrkin, A., and Gritcenko, P., Adaptive Filters Cascade Applied to a Frequency Identification Improvement Problem, Int. J. Adapt. Control Signal Proc., 2016, vol. 30, no. 5, pp. 677–689.

    Article  MathSciNet  Google Scholar 

  12. Anderson, B., From Youla–Kucera to Identification, Adaptive and Nonlinear Control, Automatica, 1998, vol. 34, no. 12, pp. 1485–1506.

    Article  MathSciNet  MATH  Google Scholar 

  13. Larin, V.B., Spektral’nye metody sinteza lineinykh sistem s obratnoi svyaz’yu (Spectral Synthesis Methods for Linear Systems with Feedback). Kiev: Naukova Dumka, 1971.

    Google Scholar 

  14. Kucera, V., Stability of Discrete Linear Control Systems, Preprints 6 IFAC World Congr., Boston/Cambridge, 1975.

    Google Scholar 

  15. Youla, D., Jabr, H., and Bongiorno, J., Modern Wiener-Hopf Design of Optimal Controllers—Part I: The Single-Input Case, IEEE Trans. Autom. Control, 1976, vol. 21, no. 3, pp. 3–14.

    Article  MATH  Google Scholar 

  16. Aranovskii, S.V., Bobtsov, A.A., Kremlev, A.S., Luk’yanova, G.V., and Nikolaev, N.A., Identification of Frequency of a Shifted Sinusoidal Signal, Autom. Remote Control, 2008, vol. 69, no. 9, pp. 1447–1453.

    Article  MathSciNet  MATH  Google Scholar 

  17. Aranovskii, S.V., Bobtsov, A.A., and Pyrkin, A.A., Adaptive Observer of an Unknown Sinusoidal Output Disturbance for Linear Plants, Autom. Remote Control, 2009, vol. 70, no. 11, pp. 1862–1870.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bodson, M. and Douglas, S., Adaptive Algorithms for the Rejection of Sinusoidal Disturbances with Unknown Frequency, Automatica, 1997, vol. 33, no. 12, pp. 2213–2221.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hsu, L., Ortega, R., and Damm, G., A Globally Convergent Frequency Estimator, IEEE Trans. Autom. Control, 1999, vol. 44, no. 4, pp. 698–713.

    Article  MathSciNet  MATH  Google Scholar 

  20. Xia, X., Global Frequency Estimation using Adaptive Identifiers, IEEE Trans. Autom. Control, 2002, vol. 47, no. 7, pp. 1188–1193.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hou, M., Estimation of Sinusoidal Frequencies and Amplitudes using Adaptive Identifier and Observer, IEEE Trans. Autom. Control, 2007, vol. 52, no. 3, pp. 493–499.

    Article  MathSciNet  MATH  Google Scholar 

  22. Marino, R. and Tomei, P., Global Estimation of n Unknown Frequencies, IEEE Trans. Autom. Control, 2002, vol. 47, no. 8, pp. 1324–1328.

    Article  MathSciNet  MATH  Google Scholar 

  23. Aranovskiy, S., Bobtsov, A., Kremlev, A., Nikolaev, N., and Slita, O., Identification of Frequency of Biased Harmonic Signal, Eur. J. Control, 2010, vol. 16, no. 2, pp. 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  24. Boli, C., Pin, G., and Parisini, T., Robust Parametric Estimation of Biased Sinusoidal Signals: A Parallel Pre-Filtering Approach, 53rd Conf. Decision and Control (CDC), 2014, pp. 1804–1809.

    Google Scholar 

  25. Hou, M., Parameter Identification of Sinusoids, IEEE Trans. Autom. Control, 2012, vol. 57, no. 2, pp. 467–472.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fedele, G. and Ferrise, A., A Frequency-Locked-Loop Filter for Biased Multi-Sinusoidal Estimation, IEEE Trans. Signal Proc., 2014, vol. 62, no. 5, pp. 1125–1134.

    Article  MathSciNet  Google Scholar 

  27. Fedele, G. and Ferrise, A., Non-Adaptive Second-Order Generalized Integrator for Identification of a Biased Sinusoidal Signal, IEEE Trans. Autom. Control, 2012, vol. 57, no. 7, pp. 1838–1842.

    Article  MathSciNet  MATH  Google Scholar 

  28. Regalia, P., An Improved Lattice-Based Adaptive IIR Notch Filter, IEEE Trans. Signal Proc., 1991, vol. 39, no. 9, pp. 2124–2128.

    Article  Google Scholar 

  29. Mojiri, M. and Bakhshai, A., An Adaptive Notch Filter for Frequency Estimation of a Periodic Signal, IEEE Trans. Autom. Control, 2004, vol. 49, no. 2, pp. 314–318.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, B. and Bodson, M., A Magnitude/Phase-Locked Loop Approach to Parameter Estimation of Periodic Signals, IEEE Trans. Autom. Control, 2003, vol. 48, no. 4. pp. 612–618.

    Article  MathSciNet  MATH  Google Scholar 

  31. Hou, M., Amplitude and Frequency Estimator of a Sinusoid, IEEE Trans. Autom. Control, 2005, vol. 50, no. 6, pp. 855–858.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

Original Russian Text © Jian Wang, S.V. Aranovskiy, A.A. Bobtsov, A.A. Pyrkin, 2017, published in Avtomatika i Telemekhanika, 2017, No. 9, pp. 19–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Aranovskiy, S.V., Bobtsov, A.A. et al. Compensating for a multisinusoidal disturbance based on Youla–Kucera parametrization. Autom Remote Control 78, 1559–1571 (2017). https://doi.org/10.1134/S0005117917090028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917090028

Keywords

Navigation