Skip to main content
Log in

Electrochemical Immunosensor in Combination with an Artificial Neural Network Study for Pathogenic Bacteria Detection using a Modified Glassy Carbon Electrode

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

We report here the results of studies related to the fabrication of an electrochemical immunosensor for the detection of Escherichia coli ATCC 25922 using AuNPs-GCE-avidin-Ab-E. coli based on complex compound. In the presence of targeted bacteria, the specific antibody was coated on the surface with gold nanoparticles (AuNPs). The detailed morphology of synthesized AuNPs was confirmed using analytical techniques. The proposed immunosensor revealed a high electrocatalytic activity and linear response at the peak potential value over a wide concentration of E. coli ATCC 25922 from 101 to 105 CFU/mL. The results were correlated with the linear equation of (R2 = 0.991). The recorded results were responded in the presence of targeted E. coli ATCC 25922 with other bacterial strains such as Salmonella typhi, Klebsiella aerogenes, and E. coli O57:H7 indicating a high selectivity of electrochemical immunosensor. A combined artificial neural network (ANN) approach serves as a powerful model to understand and analyze the intelligent data of the digital transformation output. The determined regression method of the fabricated sensor was selected for evaluation of the ANN-based technique that initiated to be a superior known method. The applied technique confirmed a great practical approach to targeted bacteria in spiked samples of the sandwich complex. Therefore, the satisfactory result demonstrates the feature of simulation data attainment and analysis is highly reliable and attractive. Moreover, the constructed immunosensor may be used to screen contaminated water and prevents an epidemic of life-threatening infectious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Lee, J., Perera, D., Glickman, T., and Taing, L., Prog. Disaster Sci., 2020, vol. 8, p. 100123. https://doi.org/10.1016/j.pdisas.2020.100123

    Article  Google Scholar 

  2. Cissé, G., Acta Trop., 2019, vol. 194, p. 181188. https://doi.org/10.1016/j.actatropica.2019.03.012

    Article  Google Scholar 

  3. Ramanujam, A., Neyhouse, B., Keogh, R.A., Muthuvel, M., Carroll, R.K., and Botte, G.G., Chem. Eng. J., 2021, vol. 411, p. 128453. https://doi.org/10.1016/j.cej.2021.128453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Panhwar, S., Ilhan, H., Hassan, S.S., Zengin, A., Boyacı, I.H., and Tamer, U., Electroanalysis, 2020, vol. 32, pp. 2244–2252. https://doi.org/10.1002/elan.202060185

    Article  CAS  Google Scholar 

  5. Barrantes, K., Chacón, L., Morales, E., Rivera-Montero, L., Pino, M., Jiménez, A.G., et al., Water Health, 2022, vol. 20, pp. 344–355. https://doi.org/10.2166/wh.2022.230

    Article  Google Scholar 

  6. Peprah, C., Oduro-Ofori, E., and Asante-Wusu, I., J. Sustain. Dev., 2015, vol. 8, pp. 310–325. https://doi.org/10.5539/jsd.v8n8p310

    Article  Google Scholar 

  7. Pouramin, P., Nagabhatla, N., and Miletto, M., Front. Water, 2020, vol. 2, pp. 1–25. https://doi.org/10.3389/frwa.2020.00006

    Article  Google Scholar 

  8. Panhwar, S., Aftab, A., Keerio, H.A., Sarmadivaleh, M., and Tamer, U. J., Electrochem. Soc., 2021, vol. 168, p. 037514. https://doi.org/10.1149/1945-7111/abec67

    Article  CAS  Google Scholar 

  9. Zhang, S., Li, X., Wu, J., Coin, L., O’brien, J., Hai, F., et al., Water, 2021, vol. 13, p. 3551. https://doi.org/10.3390/w13243551

    Article  CAS  Google Scholar 

  10. Altenburger, R., Brack, W., Burgess, R.M., Busch, W., Escher, B.I., Focks, A., et al., Environ. Sci. Eur., 2019, vol. 31, pp. 1–17. https://doi.org/10.1186/s12302-019-0193-1

    Article  Google Scholar 

  11. Canciu, A., Tertis, M., Hosu, O., Cernat, A., Cristea, C., and Graur, F., Sustainability, 2021, vol. 13, p. 7229. https://doi.org/10.3390/su13137229

    Article  CAS  Google Scholar 

  12. Choi, Y., Lee, S., Lee, H., Lee, S., Kim, S., Lee, J., et al., Korean J. Food Sci. Anim. Resour., 2018, vol. 38, p. 829. https://doi.org/10.5851/kosfa.2018.e19

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bhatt, R.T., Nagwadiya, M.A., Chandran, S., and Yagnik, B.N., J. Appl. Nat. Sci. 2018, vol. 10, pp. 905–909. https://doi.org/10.31018/jans.v10i3.1796

    Article  CAS  Google Scholar 

  14. Electroanalytical Applications of Quantum Dot-Based Biosensors, Uslu, B., Ed., Elsevier, 2021, pp. 379–393. https://doi.org/10.1016/B978-0-12-821670-5.00003-8

  15. Panhwar, S., Hassan, S.S., Mahar, R.B., Carlson, K., and Talpur, M.Y., J. Electrochem. Soc., 2019, vol. 166, p. B227. https://doi.org/10.1149/2.0691904jes

    Article  CAS  Google Scholar 

  16. Iftikhar, T., Aziz, A., Ashraf, G., Xu, Y., Li, G., Zhang, T., et al., Food Chem., 2022, vol. 395, p. 133642. https://doi.org/10.1016/j.foodchem.2022.133642

    Article  PubMed  CAS  Google Scholar 

  17. Liu, X., Li, W.-J., Li, L., Yang, Y., Mao, L.-G., et al., Sens. Actuators B Chem., 2014, vol. 191, pp. 408–414. https://doi.org/10.1016/j.snb.2013.10.033

    Article  CAS  Google Scholar 

  18. Petryayeva, E. and Krull, U.J., Anal. Chim. Acta, 2011, vol 706, pp. 8–24. https://doi.org/10.1016/j.aca.2011.08.020

    Article  PubMed  CAS  Google Scholar 

  19. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., and Walsh, A., Nature, 2018, vol. 559, pp. 547–555. https://doi.org/10.1038/s41586-018-0337-2

    Article  PubMed  CAS  Google Scholar 

  20. Archana, P., Divyabharathi, P., and Joshya, Y.C., J. Phys. Conf. Ser. 2021, vol. 1979, p. 012016. https://doi.org/10.1088/1742-6596/1979/1/012016

    Article  Google Scholar 

  21. Schackart, K.E. and Yoon, J.Y., Sensors. 2021, vol. 21, p. 5519. https://doi.org/10.3390/s21165519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Haleem, A., Javaid, M., Singh, R.P., Suman, R., and Rab, S., Sens. J., 2021, vol. 2, p. 100100. https://doi.org/10.1016/j.sintl.2021.100100

    Article  Google Scholar 

  23. The Detection of Biomarkers. Elsevier, Eds. S. Ozkan, N. Bakirhan, F. Mollarasouli, 2022, pp. 255–276. https://doi.org/10.1016/B978-0-12-822859-3.00005-5

  24. Hassan, S.S., Panhwar, S., Nafady, A., Al-Enizi, A.M., Sherazi, S.T.H., Kalhoro, M.S., et al., J. Electrochem. Soc., 2017, vol. 164, p. B427. https://doi.org/10.1149/2.0811709jes

    Article  CAS  Google Scholar 

  25. Panhwar, S., Keerio, H.A., Ali, A., Aftab, A., Chang, M.A., Khokhar, N.H., et al., Adv. Mater. Process Technol., 2022, vol. 8, pp. 4106–4121. https://doi.org/10.1080/2374068X.2022.2036588

    Article  Google Scholar 

  26. Aljabali, A.A., Akkam, Y., Al Zoubi, M.S., Al-Batayneh, K.M., Al-Trad, B., Abo Alrob, O., et al., Nanomaterials, 2018, vol. 8, p. 174. https://doi.org/10.3390/nano8030174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mourdikoudis, S., Pallares, R.M., and Thanh, N.T., Nanoscale, 2018, vol. 10, pp. 12871–12934. https://doi.org/10.1039/C8NR02278J

    Article  PubMed  CAS  Google Scholar 

  28. Ngo, V.K.T., Nguyen, H.P.U., Huynh, T.P., Tran, N.N.P., Lam, Q.V., and Huynh, T.D., Nanosci. Nanotechnol., 2015, vol. 6, p. 035015. https://doi.org/10.1088/2043-6262/6/3/035015

    Article  CAS  Google Scholar 

  29. Masdor, N.A., Altintas, Z., and Tothill, I.E., Chemosensors, 2017, vol. 5, p. 16. https://doi.org/10.3390/chemosensors5020016

    Article  CAS  Google Scholar 

  30. Fallah, H., Asadishad, T., Parsanasab, G.M., Harun, S.W., Mohammed, W.S., and Yasin, M., Water. Eng. J., 2021, vol. 25, pp. 1–8. https://doi.org/10.4186/ej.2021.25.12.1

    Article  CAS  Google Scholar 

  31. Li, F., Zhao, Q., Wang, C., Lu, X., Li, X. F., and Le, X.C., Anal. Chem., 2010, vol. 82, pp. 3399–3403. https://doi.org/10.1021/ac100325f

    Article  PubMed  CAS  Google Scholar 

  32. Panhwar, S., Aftab, A., Muqeet, M., Keerio, H.A., Solangi, G.S., Suludere, Z., et al., J. Electron. Mater., 2021, vol. 50, pp. 7119–7125. https://doi.org/10.1007/s11664-021-09247-2

    Article  CAS  Google Scholar 

  33. Gutés A., Céspedes F., Alegret S., and Del Valle M., Biosens Bioelectron., 2005, vol. 20, pp. 1668–1673. https://doi.org/10.1016/j.bios.2004.07.026

    Article  PubMed  CAS  Google Scholar 

  34. Abu-Ali, H., Nabok, A., and Smith, T.J., Anal. Bioanal. Chem., 2019, vol. 411, pp. 7659–7668. https://doi.org/10.1007/s00216-019-01853-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sheng, Y., Qian, W., Huang, J., Wu, B., Yang, J., Xue, T., et al., Microchim. Acta, 2019, vol. 186, pp. 1–12. https://doi.org/10.1007/s00604-019-3652-x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. H.A. Keerio is grateful to Higher Education Commission (HEC) Pakistan for providing the placement at environment department, QUEST, Nawabshah.

Funding

To the core of our heart and thanks from all authors to Scientific and Technological Research Council (TUBITAK), Türkiye, who supported us with funding (E-21514107-115.02-345503) for the 2221 visiting scientist programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Panhwar or H. A. Keerio.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICTS OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panhwar, S., Keerio, H.A., Ali, A. et al. Electrochemical Immunosensor in Combination with an Artificial Neural Network Study for Pathogenic Bacteria Detection using a Modified Glassy Carbon Electrode. Appl Biochem Microbiol 59, 975–985 (2023). https://doi.org/10.1134/S0003683823060261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823060261

Keywords:

Navigation