Skip to main content
Log in

Fungicidal and Bactericidal Activity of Chitosans with Different Molecular Weights and Copper Complexes Based on Them

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This work examines the antibacterial and antifungal activity of chitosans with a deacetylation degree of 85% and molecular weights (MWs) in a wide range of values (5, 10, 50, 150 kDa), as well as copper complexes obtained on their basis. It was found that the studied chitosan activity has a certain dependence on the chitosan MW and concentration. It has been shown that the biocidal activity of copper complexes at a concentration of 0.02–01%, does not depend on the chitosan MW, but the complexes are characterized by a higher antibacterial and antifungal activity as compared to chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. El Hardrami, A., Adam, L.R., El Hadrami, I., and Daayf, F., Mar. Drugs, 2010, vol. 8, no. 4, pp. 968–987.

    Article  Google Scholar 

  2. Khitozan (Chitosan), Skryabin, K.G, Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Tsentr Bioinzheneriya Ross. Akad. Nauk, 2013.

    Google Scholar 

  3. Kabanov, V.L. and Novinyuk, L.V., Food Syst., 2020, no. 3, pp. P. 10–15.

  4. Wang, W., Xue, C., and Mao, X., Int. J. Biol. Macromol., 2020, vol. 164, pp. 4532–4546.

    Article  CAS  Google Scholar 

  5. Varlamov, V.P., Il’ina, A.V., Shagdarova, B.Ts., Lun’kov, A.P., and Mysyakina, I.S., Usp. Biol. Khim., 2020, vol. 60, pp. 317–368.

    Google Scholar 

  6. Ardean, C., Davidescu, C.M., Nemes, N.S., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., and Musta, V., Int. J. Mol. Sci., 2021, vol. 22, no. 14, p. 7449.

    Article  CAS  Google Scholar 

  7. Jianhui, Li. and Shaoling, Z., Eur. Polym. J., 2020, vol. 138. https://doi.org/10.1016/j.eurpolymj.2020.109984

  8. Hosseinnejad, M. and Jafari, S.M., Int. J. Biol. Macromol., 2016, vol. 85, pp. 467–475.

    Article  CAS  Google Scholar 

  9. Verlee, A., Mincke, S., and Stevens, C.V., Carbohydr. Res., 2017, vol. 164, pp. 268–283.

    Article  CAS  Google Scholar 

  10. Matica, M.A., Aachmann, F.L., Tondervik, A., Sletta, H., and Ostafe, V., Int. J. Mol. Sci., 2019, vol. 20, p. 5889. https://doi.org/10.3390/ijms20235889

    Article  CAS  PubMed Central  Google Scholar 

  11. Kong, M., Chen, X.G., Xing, K., and Park, H.J., Int. J. Food Microbiol., 2010, vol. 144, pp. 51–63.

    Article  CAS  Google Scholar 

  12. Il'ina, A.V. and Varlamov, V.P., App. Biochem. Microbiol., 2003, vol. 39, no. 3, pp. 239–242.

    Article  CAS  Google Scholar 

  13. Mellegård, H., Strand, S.P., Christensen, B.E., Granum, P.E., and Hardy, S.P., Int. J. Food Microbiol., 2011, vol. 148, pp. 48–54.

    Article  Google Scholar 

  14. Fernandes, J.C., Eaton, P., Gomes, A.M., Pimtado, M.E., and Xavier Malcata, F., Ultramicroscopy, 2009, vol. 109, no. 8, pp. 854–860.

    Article  CAS  Google Scholar 

  15. Kumar, A.B.V., Varadaraj, M.C., and Tharanathan, R.N., Biomacromoleculers, 2007, vol. 2, no. 2, pp. 566–572.

    Article  Google Scholar 

  16. Hafdani, F. and Sadeghinia, N., World Acad. Sci. Eng. Technol., 2011, vol. 74, pp. 257–261; Int. J. Pharm. Pharm. Sci., 2011, vol. 5, no. 2, pp. 46–50.

    Google Scholar 

  17. Attjioui, M., Gillet, D., El Gueddari, N.E., and Moerschbacher, B.M., MPMI, 2021, vol. 34, no. 7, pp. 770–778.

    Article  Google Scholar 

  18. Matica, A., Menghiu, G., and Ostafe, V., New Front. Chem., 2017, vol. 26, no. 1, pp. 55–63.

    Google Scholar 

  19. Seyfarth, F., Schliemann, S., Elsner, P., and Hipler, U.C., Int. J. Pharm., 2008, vol. 353, nos. 1–2, pp. 139–148.

    CAS  PubMed  Google Scholar 

  20. Li, R., Guo, Z., and Jiang, P., Carbohydr. Res., 2010, no. 345, pp. 1896–1900.

  21. Singburaudom, N., Piasai, O., and Dethaub, T., Kasetsart J. (Nat. Sci.), 2011, vol. 45, pp. 644–655.

    CAS  Google Scholar 

  22. Hongpattarakere, T. and Riyaphan, O., J. Sci. Technol., 2008, no. 30, pp. 1–9.

  23. Cé, R., Marchi, J.G., Bergamo, V.Z., Fuentefria, A.M., Lavayen, V., Guterres, S.S., and Pohlmann, A.R., Colloids Surf. A: Physicochem. Eng. Aspects, 2016, no. 511, pp. 153–161.

  24. de Oliveira, PedroR., Takaki, M., Gorayeb, T.C.C., Bianchi, V.L.D., Thomeo, J.C., Tiera, M.J., and de Oliveira Tiera, V.A., Microbiol. Res, 2013, vol. 168, no. 1, pp. 50–55.

    Article  Google Scholar 

  25. Choudhary, M.K., Joshi, A., and Saharan, V., Int. J. Curr. Microbiol. Appl. Sci., 2017, vol. 6, no. 11, pp. 1335–1350.

    Google Scholar 

  26. Al-Dhabaan, F.A., Shoala Ali, A.A.M., Alaa, M., and Abd-Elsalam, K., Int. J. Agric. Technol., 2017, vol. 13, no. 5, pp. 753–769.

    CAS  Google Scholar 

  27. Gritsch, L., Lovell, C., Goldmann, W., and Boccaccini, A., Carbohydr. Res., 2018, vol. 179, pp. 370–378.

    Article  CAS  Google Scholar 

  28. Vlasov, P.S., Kiselev, A.A., Domnina, N.S., Popova, E.V., and Tyuterev, S.L., Zh. Prikl. Khim., 2009, vol. 82, no. 9, pp. 1571–1575.

    Google Scholar 

  29. Riccardo, A.A., Chitin, Oxford: Pergamon Press, 1977.

    Google Scholar 

  30. Kong, X., Carbohydr. Res., 2012, no. 88, pp. 336–341.

  31. Kuleshova, S.I., Vedomosti Nauchn. Tsentra Ekspert. Sredstv Med. Primen., 2015, no. 3, pp. 13–17.

  32. Metodicheskie rekomendatsii po ispytaniyu khimicheskikh veshchestv na fungitsidnuyu aktivnost' (Guidelines for Testing Chemicals for Fungicidal Activity) Andreeva, E.I. and Kartomyshev, V.S., Eds., NIITEKhIM, 1990, pp. 4−5.

  33. Palma-Guerrero, J., Jansson, H.-B., Salinas, J., and Lopez-Llorca, L.V., J. Appl. Microbiol., 2008, vol. 104, no. 2, pp. 541–53.

    CAS  PubMed  Google Scholar 

  34. Divya, K., Vijayan, S., George, T.K., and Jisha, M.S., Fibers Polim., 2017, vol. 18, no. 2, pp. 221–230.

    Article  CAS  Google Scholar 

  35. Kurek, D.V., in Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Tsentr Bioinzheneriya Ross. Akad. Nauk, 2013, pp. 61–70.

    Google Scholar 

  36. Abdeltwab, W.M., Abdelaliem, Y.F., Metry, W.A., and Eldeghedy, M., J. Adv. Lab. Res. Biol., 2019, vol. 10, no. 1, pp. 8–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Popova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.V., Kovalenko, N.M. & Domnina, N.S. Fungicidal and Bactericidal Activity of Chitosans with Different Molecular Weights and Copper Complexes Based on Them. Appl Biochem Microbiol 58, 322–328 (2022). https://doi.org/10.1134/S0003683822030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822030115

Keywords:

Navigation