Skip to main content
Log in

Study of the Potential of the Reversal of the Fatty-Acid Beta-Oxidation Pathway for Stereoselective Biosynthesis of (S)-1,3-Butanediol from Glucose by Recombinant Escherichia coli Strains

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The possible contribution of collateral enzymes to the formation of the key precursor metabolite, 3-hydroxybutyryl-CoA, has been evaluated in a recombinant Escherichia coli strain engineered for 1,3-butanediol biosynthesis from glucose via the inverted fatty-acid beta-oxidation pathway. Inactivation of the 3-hydroxyadipyl-CoA dehydrogenase gene, paaH, did not prevent 1,3-butanol biosynthesis during anaerobic glucose utilization by a strain with an intact, essential gene, fabG. This gene encodes 3-ketoacyl-ACP reductase, which can catalyze the conversion of acetoacetyl-CoA to (R)-3-hydroxybutyryl-CoA. The subsequent inactivation in the strain of the fadB gene, which encodes (S)-stereospecific 3-hydroxyacyl-CoA dehydrogenase of the fatty-acid beta oxidation led to the cessation of 1,3-butanediol synthesis. The respective diol was also not found among the products secreted by the strain possessing the intact fabG and paaH genes upon the individual deletion of the fadB gene. It was established that the collateral enzymes did not participate in the formation of 3-hydroxybutyryl-CoA in the studied strains, and the respective CoA derivative was synthesized solely by the (S)-specific enzyme of the fatty-acid beta-oxidation pathway. The results indicate that reversal of the fatty-acid beta oxidation pathway can ensure the enantioselective biosynthesis of the (S)-stereoisomer of 1,3-butanediol in engineered E. coli strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aguilar, A., Twardowski, T., and Wohlgemuth, R., Bioeconomy for sustainable development, Biotechnol. J., 2019, vol. 14, no. 8. e1800638. https://doi.org/10.1002/biot.201800638

    Article  CAS  PubMed  Google Scholar 

  2. Stereoselective Biocatalysis, Patel, R.N., Ed., New York: Marcel Dekker Inc., 2000.

    Google Scholar 

  3. Rosen, T.C., Daussmann, T., and Stohrer, J., Bioreduction forms optically active 3-hydroxyesters, Spec. Chem. Mag., 2004, vol. 24, no. 4, pp. 39–40.

    Google Scholar 

  4. Chen, G.Q. and Wu, Q., Microbial production and applications of chiral hydroxyalkanoates, Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 5, pp. 592–599.

    Article  CAS  PubMed  Google Scholar 

  5. Ren, Q., Ruth, K., Thony-Meyer, L., and Zinn, M., Enantiomerically pure hydroxycarboxylic acids: current approaches and future perspectives, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 1, pp. 41–52. https://doi.org/10.1007/s00253-010-2530-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, S.Y. and Lee, Y., Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)‑(–)-hydroxycarboxylic acids, Appl. Environ. Microbiol., 2003, vol. 69, no. 6, pp. 3421–3426. https://doi.org/10.1128/aem.69.6.3421-3426.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park, S.J., Lee, S.Y., and Lee, Y., Biosynthesis of (R)‑3-hydroxyalkanoic acids by metabolically engineered Escherichia coli,Appl. Biochem. Biotechnol., 2004, vol. 113–116, pp. 373–379.

    Article  PubMed  Google Scholar 

  8. Kataoka, N., Vangnai, A.S., Tajima, T., et al., Improvement of (R)-1,3-butanediol production by engineered Escherichia coli,J. Biosci. Bioeng., 2013, vol. 115, no. 5, pp. 475–480. https://doi.org/10.1016/j.jbiosc.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  9. Kataoka, N., Vangnai, A.S., Ueda, H., et al., Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH, Biosci. Biotechnol. Biochem., 2014, vol. 78, no. 4, pp. 695–700. https://doi.org/10.1080/09168451.2014.891933

    Article  CAS  PubMed  Google Scholar 

  10. Nandedkar, A.K. and Kumar, S., Biosynthesis of fatty acids in mammary tissue. II. Synthesis of butyrate in lactating rabbit mammary supernatant fraction by the reversal of beta-oxidation, Arch. Biochem. Biophys., 1969, vol. 134, no. 2, pp. 563–571.

    Article  CAS  PubMed  Google Scholar 

  11. Dellomonaco, C., Clomburg, J.M., Miller, E.N., and Gonzalez, R., Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals, Nature, 2011, vol. 476, pp. 355–359. https://doi.org/10.1038/nature10333

    Article  CAS  PubMed  Google Scholar 

  12. Clomburg, J.M., Vick, J.E., Blankschien, M.D., et al., A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle, ACS Synth. Biol., 2012, vol. 1, pp. 541–554. https://doi.org/10.1021/sb3000782

    Article  CAS  PubMed  Google Scholar 

  13. Gulevich, A.Y., Skorokhodova, A.Y., Sukhozhenko, A.V., et al., Metabolic engineering of Escherichia coli for 1‑butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway, Biotechnol. Lett., 2012, vol. 34, no. 3, pp. 463–469. https://doi.org/10.1007/s10529-011-0797-z

    Article  CAS  PubMed  Google Scholar 

  14. Kim, S., Clomburg, J.M., and Gonzalez, R., Synthesis of medium-chain length (C6-C10) fuels and chemicals via β-oxidation reversal in Escherichia coli,J. Ind. Microbiol. Biotechnol., 2015, vol. 42, pp. 465–475. https://doi.org/10.1007/s10295-015-1589-6

    Article  CAS  PubMed  Google Scholar 

  15. Gulevich, A.Y., Skorokhodova, A.Y., Sukhozhenko, A.V., and Debabov, V.G., Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli,J. Biotechnol., 2017, vol. 244, pp. 16–24. https://doi.org/10.1016/j.jbiotec.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  16. Gulevich, A.Yu., Skorokhodova, A.Yu., Stasenko, A.A., et al., Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid-oxidation cycle, Appl. Biochem. Microbiol., 2016, vol. 52, no. 1, pp. 15–22. https://doi.org/10.1134/S0003683816010051

    Article  CAS  Google Scholar 

  17. Taguchi, K., Aoyagi, Y., Matsusaki, H., et al., Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain, FEMS Microbiol. Lett., 1999, vol. 176, pp. 183–190. https://doi.org/10.1111/j.1574-6968.1999.tb13660.x

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y.M., Wu, B., Zheng, J., and Rock, C.O., Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction, J. Biol. Chem., 2003, vol. 278, pp. 52935–52943. https://doi.org/10.1074/jbc.M309874200

    Article  CAS  PubMed  Google Scholar 

  19. Park, S.J. and Lee, S.Y., Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli, J. Bacteriol., 2003, vol. 185, pp. 5391–5397. https://doi.org/10.1128/JB.185.18.5391-5397.200320

  20. Babu, T., Yun, E.J., Kim, S., et al., Engineering Escherichia coli for the production of adipic acid through the reversed β-oxidation pathway, Process Biochem, 2015, vol. 50, pp. 2066–2071. https://doi.org/10.1016/j.procbio.2015.09.018

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York, USA: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  22. Katashkina, Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., et al., Tuning the expression level of a gene located on a bacterial chromosome, Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 719–726.

    Article  CAS  Google Scholar 

  23. Datsenko, K.A. and Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 12, pp. 6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gulevich, A.Yu, Skorokhodova, A.Yu., Ermishev, V.Yu., et al., A new method for the construction of translationally coupled operons in a bacterial chromosome, Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 505–514.

    Article  CAS  Google Scholar 

  25. Gulevich, A.Yu., Skorokhodova, A.Yu., Morzhakova, A.A., et al., 1-Butanol synthesis by Escherichia coli cells through butyryl-CoA formation by heterologous enzymes of Clostridia and native enzymes of fatty acid β-oxidation, App. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 344–349.

    Article  CAS  Google Scholar 

  26. Zhang, Y. and Cronan, J.E., Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster, J. Bacteriol., 1998, vol. 180, no. 13, pp. 3295–3303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teufel, R., Mascaraque, V., Ismail, W., et al., Bacterial phenylalanine and phenylacetate catabolic pathway revealed, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 32, pp. 14390–14395.https://doi.org/10.1073/pnas.1005399107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by a grant from the Russian Foundation for Basic Research (project no.18-29-08059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Gulevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: ACP—acyl carrier protein; HPLC—high performance liquid chromatography; IPTG—isopropyl-β-D-thiogalactoside; PCR—polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulevich, A.Y., Skorokhodova, A.Y. & Debabov, V.G. Study of the Potential of the Reversal of the Fatty-Acid Beta-Oxidation Pathway for Stereoselective Biosynthesis of (S)-1,3-Butanediol from Glucose by Recombinant Escherichia coli Strains. Appl Biochem Microbiol 56, 822–827 (2020). https://doi.org/10.1134/S0003683820080049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820080049

Keywords:

Navigation