Skip to main content
Log in

Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Improving the thermostability of the luciferase from firefly (Photinus pyralis) needs to be solved to broaden its industrial applications. In this paper, molecular dynamic (MD) simulations were used to identify 4 amino acid substitutions (P183V, E325K, Q338V, and E354K) which might have a significant influence on the thermostability of luciferase. Root-mean-square deviation values were calculated to further evaluate the effect of these mutations on thermostability of the enzyme and demonstrated that the thermostability of the corresponding protein variants was in the order E354K > E325K > WT > P183V > Q338V. Following the MD simulation, the enzyme variants were expressed in a recombinant host, and the results showed that the t1/2, T50, and Tm of mutant E354K were increased 2.32-fold, and 4.5 and 3.3°C more compared with the wild type, respectively. MD simulations, as well as circular dichroism and fluorescence spectroscopy were further applied to elucidate the conformational differences between the wild-type and E354K luciferases. The results indicated that a possible explanation for the improved thermostability of E354K enzyme lies in the formation of a salt bridge between Lys354 and Glu311 and alteration of protein conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fraga, H., Photochem. Photobiol. Sci., 2008, vol. 7, no. 2, pp. 146–158.

    Article  CAS  PubMed  Google Scholar 

  2. Niwa, K., Ichino, Y., Kumata, S., Nakajima, Y., Hiraishi, Y., Kato, D., et al., Photochem Photobiol., 2010, vol. 86, no. 5, pp. 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  3. Yamakawa, Y., Ueda, H., Kitayama, A., and Nagamune, T., J. Biosci. Bioeng., 2002, vol. 93, no. 6, pp. 537–642.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, H.K., Cho, E.J., Jo, S., M., Sung, B.R., Lee, S., and Yun, S., Curr. Genet., 2012, vol. 58, no. 3, pp. 179–189.

    Article  CAS  PubMed  Google Scholar 

  5. Brogan, J., Li, F., Li, W., He, Z., Huang, Q., and Li, C.Y., Radiat. Res., 2012, vol. 177, no. 4, pp. 508–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mollania, N., Khajeh, K., Ranjbar, B., and Hosseinkhani, S., Enzyme Microb. Tech., 2011, vol. 49, no. 5, pp. 446–452.

    Article  CAS  Google Scholar 

  7. Madan, B. and Mishra, P., Biochem. Eng. J., 2014, vol. 91, no. 3, pp. 276–282.

    Article  CAS  Google Scholar 

  8. Liu, J., Yu, H., and Shen, Z., J. Mol. Graph. Model., 2009, vol. 27, no. 4, pp. 529–535.

    Article  CAS  Google Scholar 

  9. Pikkemaat, M.G., Linssen, A.B., Berendsen, H.J., and Janssen, D.B., Protein Eng., 2002, vol. 15, no. 3, pp: 185–192.

    Article  CAS  PubMed  Google Scholar 

  10. Bayram Akcapinar, G., Venturini, A., Martelli, P.L., Casadio, R., and Sezerman, U.O., Protein. Eng. Des. Sel., 2015, vol. 28, no. 5, pp. 127–135.

    Article  CAS  PubMed  Google Scholar 

  11. Tian, J., Wang, P., Gao, S., Chu, X., Wu, N., and Fan, Y., FEBS J., 2010, vol. 277, no. 23, pp. 4901–4908.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, F., Zhuang, Y., Wu, B., Li, J., and He, B., Appl. Biochem. Biotech., 2015, vol. 178, no. 4, pp. 725–738.

    Article  CAS  Google Scholar 

  13. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J., J. Comput. Chem., 2005, vol., 26, no. 16, pp. 1701–1718.

    Article  CAS  PubMed  Google Scholar 

  14. Franks, N.P., Jenkins, A., Conti, E., Lieb, W.R., and Brick, P., Biophys. J, 1998, vol. 75, no. 5, pp. 2205–2211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Essmann, U., Perera, L., and Berkowitz, M.L., J. Chem. Phys., 1995, vol. 103, no. 19, pp. 8577–8593.

    Article  CAS  Google Scholar 

  16. Koksharov, M.I. and Ugarova, N.N., Protein. Eng. Des. Sel., 2011, vol. 24, no. 11, pp. 835–844.

    Article  CAS  PubMed  Google Scholar 

  17. Yu, H., Zhao, Y., Guo, C., Gan, Y., and Huang, H., Biochim. Biophys. Acta., 2015, vol. 1854, no. 1, pp. 65–72.

    Article  CAS  PubMed  Google Scholar 

  18. Jia, R., Hu, Y., Liu, L., Jiang, L., Zou, B., and Huang, H., ACS. Catal., 2013, vol. 3, no. 9, pp. 1976–1983.

    Article  CAS  Google Scholar 

  19. Modestova, Y., Koksharov, M.I., and Ugarova, N.N., Biochim. Biophys. Acta, 2014, vol. 1844, no. 9, pp. 1463–1471.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, J.T., Wu, C.S.C., and Martinez, H.M., Method. Enzymol., 1986, vol. 130, no. 4, pp. 208–269.

    Article  CAS  Google Scholar 

  21. Amini-Bayat, Z., Hosseinkhani, S., Jafari, R. and Khajeh, K., Biochim. Biophys. Acta, 2012, vol. 1824, no. 2, pp. 350–358.

    Article  CAS  PubMed  Google Scholar 

  22. Duan, X., Cheng, S., Ai, Y., and Wu, J., PLoS One, 2016, vol. 11, no. 2. e0149208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, C.F., Makhatadze, G.I., and Wong, K.B., Biochemistry, 2005, vol. 44, no. 51, pp. 16817–16825.

    Article  CAS  PubMed  Google Scholar 

  24. Karimzadeh, S., Moradi, M., and Hosseinkhani, S., Int. J. Biol. Macromol., 2012, vol. 51, no. 5, pp. 837–844.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, X., Jiang, L., Jia, Y., Hu, Y., Xu Q., Xu X., and Huang, H., PLoS One, 2016, vol. 11, no. 3. e0152275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, J., Yu, H., Liu, C., Liu, J., and Shen, Z., J. Biotechnol., 2012, vol. 164, no. 2, pp. 354–362.

    Article  CAS  PubMed  Google Scholar 

  27. Roseata, Z., Khajeh, K., Monajjemi, M., and Ghaemi, N., J. Microbiol. Biotech., 2013, vol. 23, no. 1, pp. 7–14.

    Article  CAS  Google Scholar 

  28. Chen, Z., Fu, Y., Xu, W., and Li, M., Math. Probl. Eng., 2013, vol. 2013, pp. 1–12.

    Google Scholar 

  29. Alipour, B.S., Hosseinkhani, S., Ardestanib, S.K., and Moradia, A., Photochem. Photobiol. Sci., 2009, vol. 8, no. 6, pp. 847–855.

    Article  CAS  Google Scholar 

  30. Tafreshi, N.Kh., Sadeqhizadeh, M., Emamzadeh, R., Ranjbar, B., Naderi-Manesh, H., and Hosseinkhani, S., Biochem. J., 2008, vol. 412, no. 1, pp. 27–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Jiang or H. Huang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Si, M., Zhang, Z. et al. Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability. Appl Biochem Microbiol 54, 584–590 (2018). https://doi.org/10.1134/S0003683819010204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819010204

Keywords:

Navigation