Skip to main content
Log in

Preparation of Chitosan Cryostructurates with Controlled Porous Morphology and Their Use as 3D-Scaffolds for the Cultivation of Animal Cells

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The influence of the conditions of the formation of genipin cross-linked chitosan cryostructurates on the porous morphology and physicochemical properties of these cryostructurates and on the possibility of their use as biopolymer 3D scaffolds for tissue engineering was studied. The chitosan cryostructurates were obtained by freeze-drying a chitosan acetate solution, treating the resulting sponge with an alcohol solution of ammonia to transform the polyaminosaccharide from a salt into a chitosan-base, and then cross-linking the polymer with genipin (the molar ratios of genipin to the number of chitosan amino groups were 0.05, 0.033, and 0.02, respectively). The pore sizes, water-holding capacity, and in vitro biodegradation rate of the cryostructurates were shown to depend on the aforementioned ratio. The properties of the prepared chitosan cryostructurates, the hydrogels formed by chitosan cross-linking with genipin at positive temperatures, and the films cast from genipin-containing chitosan solutions after solvent evaporation were studied and compared. The biocompatibility of the obtained macroporous sponge materials was demonstrated using L929 mouse fibroblasts. Confocal laser microscopy showed that the cells in all of the 3D scaffolds obtained were evenly distributed; they grew and proliferated when cultured in vitro for seven days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R. and Vacanti, J.P., Tissue Eng. Sci., 1993, vol. 260, no. 5110, pp. 920–926.

    CAS  Google Scholar 

  2. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D.S., Int. J. Polym. Sci., 2011, vol. 2011, no. 61, pp. P. 475–480.

    Google Scholar 

  3. Van Vlierberghe, S., Dubruel, P., and Schacht, E., Biomacromolecules, 2011, vol. 12, no. 5, pp. P. 1387–1408.

    Article  PubMed  CAS  Google Scholar 

  4. Drury, J.L. and Mooney, D.J., Biomaterials, 2003, vol. 24, no. 24, pp. P. 4337–4351.

    Article  PubMed  CAS  Google Scholar 

  5. Jalani, G., Macromol. Biosci., 2015, vol. 15, no. 4, pp. 473–480.

    Article  PubMed  CAS  Google Scholar 

  6. Mao, J., Zhao, L., Yao, K., Shang, Q., Yang, G., and Cao, Y., J. Biomed. Mater. Res., 2003, vol. 64A, no. 2, pp. 301–308.

    Article  CAS  Google Scholar 

  7. Yuan, Y., Chesnutt, B.M., Utturkar, G., Haggard, W.O., Yang, Y., Ong, J.L., and Bumgardner, J.D., Carbohydr. Res., 2007, vol. 68, no. 3, pp. 561–567.

    Article  CAS  Google Scholar 

  8. Rinaudo, M., Prog. Polym. Sci., 2006, vol. 31, no. 7, pp. 603–632.

    Article  CAS  Google Scholar 

  9. Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., and Cho, C.S., Biotechnol. Adv., 2008, no. 26, pp. 1–21.

    Article  PubMed  CAS  Google Scholar 

  10. Madihally, S.V. and Matthew, H.W., Biomaterials, 1999, vol. 20, no. 12, pp. 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  11. Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., and Gurny, R., Eur. J. Pharm. Biopharm., 2004, no. 57, pp. 19–34.

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh, W.C., Chang, C.P., and Lin, S.M., Colloids Surf. B: Biointerfaces, 2007, vol. 57, no. 2, pp. 250–255.

    Article  PubMed  CAS  Google Scholar 

  13. Chang, Y., Tsai, C.C., Liang, H.C., and Sung, H.W., Biomaterials, 2002, vol. 23, no. 12, pp. 2447–2457.

    Article  PubMed  CAS  Google Scholar 

  14. Tsai, C.C., Huang, R.N., Sung, H.W., and Liang, H.C., J. Biomed. Mater. Res., 2000, vol. 52, no. 1, pp. 58–65.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, B.S., Yao, C.H., Chen, Y.S., and Hsu, S.H., J. Biomed. Mater. Res., 2003, vol. 67A, no. 4 P, pp. 1163–1169.

    Article  CAS  Google Scholar 

  16. Kil’deeva, N.R., Kasatkina, M.A., and Mikhailov, S.N., Polym. Sci., Ser. D, 2017, vol. 10, no. 2, pp. 189–193.

    Article  Google Scholar 

  17. Kasatkina, M.A., Drozdova, M.G., Demina, T.S., Uspenskii, S.A., Mikhailov, S.N., and Markvicheva, E.A., Appl. Biochem. Microbiol., 2016, vol. 52, no. 5, pp. 515–524.

    Article  CAS  Google Scholar 

  18. Sampaio, G.Y.H., Fook, A.C.B.M., Fidéles, T.B., Cavalcanti, M.E.R.R.M., and Fook, M.V.L., Mater. Sci. Forum, 2015, no. 805, pp. 116–121.

    Article  Google Scholar 

  19. Kumari, R. and Dutta, P.K., Int. J. Biol. Macromol., 2010, vol. 46, no. 2, pp. 261–266.

    Article  PubMed  CAS  Google Scholar 

  20. Lozinsky, V.I. and Okay, O., Adv. Polym. Sci., 2014, no. 263, pp. 49–101.

    Article  CAS  Google Scholar 

  21. RF Patent no. 2078099, 1994.

  22. Rodionov, I.A., Grinberg, N.V., Burova, T.V., Grinberg, V.Y., Shabatina, T.I., and Lozinsky, V.I., e-Polymers, 2017, vol. 17, no. 4, pp. 263–274.

    Article  CAS  Google Scholar 

  23. Nikonorov, V.V., Ivanov, R.V., Kil’deeva, N.R., Bulatnikova, L.N., and Lozinskii, V.I., Vysokomol. Soed. Ser. A, 2010, vol. 52, no. 8, pp. 1436–1443.

    CAS  Google Scholar 

  24. Nikonorov, V.V., Ivanov, R.V., Kil’deeva, N.R., and Lozinskii, V.I., Vysokomol. Soed. Ser. A, 2010, vol. 53, no. 12, pp. 2067–2067.

    Google Scholar 

  25. Lozinsky, V.I., Vainerman, E.S., and Rogozhin, S.V., Colloid Polym. Sci., 1982, vol. 260, no. 8, pp. 776–780.

    Article  Google Scholar 

  26. Hollister, S.J., Nature Materials, 2005, vol. T. 4, no. 7, pp. 518–524.

    Article  PubMed  CAS  Google Scholar 

  27. Podorozhko, E.A., Ul’yabaeva, G.R., Kil’deeva, N.R., Tikhonov, V.E., Antonov, Yu.A., Zhuravleva, I.L., and Lozinsky, V.I., Colloid J., 2016, vol. 78, no. 1, pp. 90–101.

    Article  CAS  Google Scholar 

  28. Kil’deeva, N.R., Gidrogeli mediko-biologicheskogo naznacheniya (Hydrogels for Biomedical Purposes), Moscow: RGU im. A.N. Kosygina, 2016.

    Google Scholar 

  29. Kil’deeva, N.R., Kasatkina, M.A., and Mikhailov, S.N., Entsikl. Sprav., 2016, no. 4, pp. 9–14.

    Google Scholar 

  30. Petrenko, Yu.A., Ivanov, R.V., Petrenko, A.Yu., and Lozinsky, V.I., J. Mater. Sci., Mater. in Med., 2011, vol. 22, no. 6, pp. 1529–1540.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Kil’deeva.

Additional information

Original Russian Text © N.A. Sazhnev, M.G. Drozdova, I.A. Rodionov, N.R. Kil’deeva, T.V. Balabanova, E.A. Markvicheva, V.I. Lozinsky, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 5, pp. 455–464.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhnev, N.A., Drozdova, M.G., Rodionov, I.A. et al. Preparation of Chitosan Cryostructurates with Controlled Porous Morphology and Their Use as 3D-Scaffolds for the Cultivation of Animal Cells. Appl Biochem Microbiol 54, 459–467 (2018). https://doi.org/10.1134/S0003683818050162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818050162

Keywords

Navigation