Skip to main content
Log in

Characterization flavanone 3β-hydroxylase expressed from Populus euphratica in Escherichia coli and its application in dihydroflavonol production

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Flavanone 3β-hydroxylase plays very important role in the biosynthesis of flavonoids. A putative flavanone 3β-hydroxylase gene (Pef3h) from Populus euphratica was cloned and over-expressed in Escherichia coli. Induction performed with 0.1 mM IPTG at 20°C led to localization of PeF3H in the soluble fraction. Recombinant enzyme was purified by Ni-NTA affinity. The optimal activity of PeF3H was revealed at pH 7.6 and 35°C. The purified enzyme was stable over pH range of 7.6–8.8 and had a half-life of 1 h at 50°C. The activity of PeF3H was significantly enhanced in the presence of Fe2+ and Fe3+. The K M and V max for the enzyme using naringenin as substrate were 0.23 mM and 0.069 μmoles mg–1min-1, respectively. The K m and V max for eriodictyol were 0.18 mM and 0.013 μmoles mg–1min–1, respectively. The optimal conditions for naringenin bioconversion in dihydrokaempferol were obtained: OD600 of 3.5 for cell concentration, 0.1 mM IPTG, 5 mM α-ketoglutaric acid and 20°C. Under the optimal conditions, naringenin (0.2 g/L) was transformed into 0.18 g/L dihydrokaempferol within 24 h by the recombinant E. coli with a corresponding molar conversion of 88%. Thus, this study provides a promising flavanone 3β-hydroxylase that may be used in biosynthetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tahara, S., Biosci. Biotech. Bioch., 2007, vol. 71, no. 6, pp. 1387–1404.

    Article  CAS  Google Scholar 

  2. Dixon. R.A. and Steele, C.L., Trends Plant Sci., 1999, vol. 4, no. 10, pp. 394–400.

    Article  CAS  PubMed  Google Scholar 

  3. Harborne, J.B. and Williams, C.A., Phytochemistry, 2000, vol. 55, no. 6, pp. 481–504.

    Article  CAS  PubMed  Google Scholar 

  4. Martens, S. and Mithofer, A., Phytochemistry, 2005, vol. 66, no. 20, pp. 2399–2407.

    Article  CAS  PubMed  Google Scholar 

  5. Winkel-Shirley, B.W., Plant Physiol., 2001, vol. 126, no. 2, pp. 485–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prescott, A.G., and John, P., Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, no. 4, pp. 245–271.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, J.W., Kim, N.H., Kim, J.Y., Park, J.H., Shin, S.Y., Kwon, Y.S., et al., Biomol. Ther., 2013, vol. 21, no. 3, pp. 216–221.

    Article  Google Scholar 

  8. Ma, C., Yang, L., Wang W., Zhao, C., and Zu., Y., Int. J. Mol. Sci., 2012, vol. 13, pp. 8789–8804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kiehlmann, E. and Li, E.P.M., J. Nat. Prod., 1995, vol. 58, no. 3, pp. 450–455.

    Article  CAS  Google Scholar 

  10. Britsch, L., Ruhnau-Brich, B., and Forkmann, G., J. Biol. Chem., 1992, vol. 267, no. 8, pp. 5380–5387.

    CAS  PubMed  Google Scholar 

  11. Davies, K.M., Plant Physiol., 1993, vol. 103, no. 1, pp. 291–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, J.H., Lee, Y.J., Kim, B.G., Lim, Y., and Ahn, J.H., Mol. Cells, 2008, vol. 25, no. 2, pp. 312–316.

    CAS  PubMed  Google Scholar 

  13. Pelletier, M.K. and Shirley B.W., Plant Physiol., 1996, vol. 111, no. 1, pp. 339–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin, Z., Grotewold, E., Qu, W., Fu, G., and Zhao, D., DNA Seq., 2005, vol. 16, no. 2, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  15. Shen, G., Pang, Y., Wu, W., Deng, Z., Zhao, L., Cao, Y., et al., Biosci. Rep., 2006, vol. 26, no. 1, pp. 19–29.

    Article  CAS  PubMed  Google Scholar 

  16. Charrier, B., Coronado, C., Kondorosi, A., and Ratet, P., Plant Mol. Biol., 1995, vol. 29, no. 4, pp. 773–786.

    Article  CAS  PubMed  Google Scholar 

  17. Baek, M.H., Chung, B.Y., Kim, J.H., Wi, S.G., An, B.C., Kim, J.S., et al., J. Hort. Sci. Biotech., 2008, vol. 83, pp. 595–602.

    Article  CAS  Google Scholar 

  18. Martens, S., Forkmann, G., Britsch, L., Wellmann, F., Matern, U., and Lukacin, R., FEBS Lett., 2003, vol. 544, no. 1–3, pp. 93–98.

    Article  CAS  PubMed  Google Scholar 

  19. Owens, D.K., Crosby, K.C., Runac, J., Howard, B.A., and Winkel, B.S.J., Plant Physiol. Biochem., 2008, vol. 46, no. 10. pp. 833–843.

    Article  CAS  PubMed  Google Scholar 

  20. Britsch, L. and Grisebach, H., Eur. J. Biochem., 1986, vol. 156, no. 3, pp. 569–577.

    Article  CAS  PubMed  Google Scholar 

  21. Lukacin, R., Groning, I., Schiltz, E., Britsch, L., and Matern, U., Arch. Biochem. Biophys., 2003, vol. 375, no. 2, pp. 364–370.

    Article  Google Scholar 

  22. Punyasiri, P.A., Abeysinghe, I.S., Kumar, V., Treutter, D., Duy, D., Gosch, C., et al., Arch. Biochem. Biophys., 2004, vol. 431, no. 1, pp. 22–30.

    Article  CAS  PubMed  Google Scholar 

  23. Halbwirth, H., Fischer, T.C., Schlangen, K., Rademacher, W., Schleifer, K.J., Forkmann, G., and Stich, K., Plant Sci., 2006, vol. 171, no. 2, pp. 194–205.

    Article  CAS  Google Scholar 

  24. Song, X., Diao, J., Ji, J., Wang, G., Guan C., Jin, C., and Wang, Y., Plant Physiol. Biochem., 2016, vol. 98, pp. 89–100.

    Article  CAS  PubMed  Google Scholar 

  25. Mahajan, M. and Yadav, S.K., Plant Mol. Biol., 2014, vol. 85, pp. 551–573.

    Article  CAS  PubMed  Google Scholar 

  26. Stahlhut, S.G., Siedler, S., Malla, S., Harrison, S.J., Maury, J., Neves, A.R., and Forster, J., Metab. Eng., 2015, vol. 31, pp. 84–93.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Y.N., Wang, Q., Ruan, X., Li, W.H., and Chen, Y.P., Acta Bot. Sin., 2004, vol. 46, no. 12, pp. 1393–1401.

    Google Scholar 

  28. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al., Bioinformatics, 2007, vol. 23, no. 21, pp. 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  29. Pan, K.L., Hsiao, H.C., Weng, C.L., Wu, M.S., and Chou, C.P., J. Bacteriol., 2003, vol. 185, no. 10, pp. 3020–3030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sevastsyanovich, Y.R., Alfasi, S.N., and Cole, J.A., Biotechnol. Appl. Biochem., 2010, vol. 55, no. 1, pp. 9–28.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, P., Ranganathan, S., Fowler, Z.L., Maranas, C.D., and Koffas, M.A., Metab. Eng., 2011, vol. 13, no. 5, pp. 578–587.

    Article  CAS  PubMed  Google Scholar 

  32. Fowler, Z.L., Gikandi, W.W., and Koffas, M.A., Appl. Environ. Microbiol., 2009, vol. 75, no. 18, pp. 5831–5839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyahisa, I., Funa, N., Ohnishi, Y., Martens, S., Moriguchi, T., and Horinouchi, S., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 1, pp. 53–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, J., Dong, P., Wu, T. et al. Characterization flavanone 3β-hydroxylase expressed from Populus euphratica in Escherichia coli and its application in dihydroflavonol production. Appl Biochem Microbiol 53, 318–324 (2017). https://doi.org/10.1134/S0003683817030127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817030127

Keywords

Navigation