Skip to main content
Log in

Aerobic biodegradation of 1,2-dichloroethane and 1,3-dichloropropene by bacteria isolated from a pulp mill wastewater effluent in South Africa

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Large volumes of chlorinated aliphatic hydrocarbons are produced annually for a variety of industrial and commercial uses. They therefore constitute common contaminants of soil and groundwater causing serious environmental and human health problems. In this study, three bacteria were isolated from a pulp mill wastewater effluent in South Africa by culture enrichment technique and characterized for their ability to degrade 1,2-dichloroethane (1,2-DCE) and 1,3-dichloropropene (1,3-DCP). Specific growth rate constants of the organisms ranged between 0.864∼1.094 and 0.530∼0.585 d−1 in 1.2-DCE and 1,3-DCP, respectively, while the degradation rate constant of the compounds ranged variously between 0.33 and 1.006 d−1, with 1,2-DCE generally better utilized than 1,3-DCP. Gas chromatographic analysis revealed up to 75 and 80% removal of 1,2-DCE and 1,3-DCP, respectively, above that observed in the control bottles. These organisms also demonstrated high haloalkane dehalogenase activities with specific dehalogenase activities ranging between 0.25∼0.31 U (mg protein)−1. Analysis of their 16S rRNA gene sequences revealed that they belong to the generaPaenibacillus, Bacillus, andMicrobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hileman, B. (1993) Concerns broaden over chlorine and chlorinated hydrocarbons.Chem. Eng. News 71: 11–20.

    Google Scholar 

  2. Canter, L. W. and D. A. Sabatini (1994) Contamination of public ground water supplies by superfund sites.Int. J. Environ. Stud. 46: 35–57.

    Article  CAS  Google Scholar 

  3. Mayer, A. S., P. P. E. Carriere, C. Gallo, K. D. Pennell, T. P. Taylor, G. A. Williams, and L. Zhong (1997) Groundwater quality.Water Environ Res. 69: 777–844.

    Article  CAS  Google Scholar 

  4. Lee, M. D. and J. W. Davis (2000) Natural remediation of chlorinated organic compounds, pp. 199–245. In: M. Swindoll, R. G. Stahl, Jr., and S. J. Ells (eds.),Natural Remediation of Environmental Contaminants. Society of Environmental Toxicology and Chemistry. Pensacola, FL, USA.

    Google Scholar 

  5. Janssen, D. B., F. Pries, J. van der Ploeg, B. Kazemier, P. Terpstra, and B. Witholt (1989) Cloning of 1,2-dichlor-oethane degrading genes ofXanthobacter autotrophicus GJ10 and expression and sequencing of thedhlA gene.J. Bacteriol. 171: 6791–6799.

    CAS  Google Scholar 

  6. Poelarends, G. J. M., M. Wilkens, M. J. Larkin, J. D. van Elsas and D. B. Janssen (1998) Degradation of 1,3-dichloropropene byPseudomonas cichorii 170.appl. Environ. Microbiol. 64: 2931–2936.

    CAS  Google Scholar 

  7. McCarty, P. L. (1997) Microbiology—Breathing with chlorinated solvents.Science 276: 1521–1522.

    Article  CAS  Google Scholar 

  8. Squillace, P. J., M. J. Moran, W. W. Lapham, C. V. Price, R. M. Clawges, and J. S. Zogorski (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995.Environ. Sci. Technol. 33: 4176–4187.

    Article  CAS  Google Scholar 

  9. van den Wijngaard, A. J., R. D. Wind, and D. B. Janssen (1993) Kinetics of bacterial growth on chlorinated aliphatic compounds.Appl. Environ. Microbiol. 59: 2041–2048.

    Google Scholar 

  10. Baker, L. W., D. L. Fitzell, J. N. Seiber, T. R. Parker, T. Shibamoto, M. W. Poore, K. E. Longely, R. P. Tomlin, R. Propper, and D. W. Duncan (1996) Ambient air concentrations of pesticides in California.Environ. Sci. Technol. 30: 1365–1368.

    Article  CAS  Google Scholar 

  11. Nouchi, T., H. Miura, M. Kanayama, O. Mizuguchi, and T. Takano (1984) Fatal intoxication by 1,2-dichloroethane—a case report.Int. Arch. Occup. Environ. Health 54: 111–113.

    Article  CAS  Google Scholar 

  12. Spreafico, F., H. Tsuruta, T. Fujii, and A. E. Munson (1980) Pharmacokinetics of ethylene dichloride in rats treated by different routes and its long-term inhalatory toxicity.Banbury Reports 5: 107–129.

    CAS  Google Scholar 

  13. Janssen, D. B., A. Scheper, L. Dijkhuizen, and B. Witholt (1985) Degradation of halogenated aliphatic compounds byXanthobacter autotrophicus GJ10.Appl. Environ. Microbiol. 49: 673–677.

    CAS  Google Scholar 

  14. Janssen, D. B., S. Keuning, and B. Witholt (1987) Involvement of a quinoprotein alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase in 2-chloroethanol metabolism inXanthomonas autotrophicus GJ10.J. Gen. Microbiol. 133: 85–92.

    CAS  Google Scholar 

  15. Castro, C. E. and N. O. Belser (1966) Hydrolysis of cis-and trans-1,3-dichloropropene in wet soil.J. Agric. Food Chem. 14: 69–70.

    Article  CAS  Google Scholar 

  16. Roberts, T. R. and G. Stoydin (1976) The degradation of (Z)-and (E)-1,3-dichloropropenes and 1,2-dichloropropane in soil.Pestic. Sci. 7: 325–335.

    Article  CAS  Google Scholar 

  17. Olaniran, A. O., D. Pillay, and B. Pillay (2004b) Aerobic dechlorination of cis- and trans-dichloroethenes by some indigenous bacteria isolated from contaminated sites in Africa.J. Environ. Sci. 16: 968–972.

    CAS  Google Scholar 

  18. Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for 16S rRNA.Appl. Environ. Microbiol. 64: 795–799.

    CAS  Google Scholar 

  19. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  20. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins (1997) The ClustaIX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res. 25: 4876–4882.

    Article  CAS  Google Scholar 

  21. Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  22. Galtier, N., M. Gouy, and C. Gautier (1996) SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny.Comput. Applic. Biosci. 12: 543–548.

    CAS  Google Scholar 

  23. Jukes, T. H. and C. R. Cantor (1969) Evolution of protein molecules. pp. 21–132. In: H. N. Munro (eds.),Mammalian Protein Metabolism. Academic Press Inc., New York, NY, USA.

    Google Scholar 

  24. Felsenstein, J. (1993) PHYLIP (phylogeny inference package) version 3.5c. Department of Genetics. University of Washington, Seattle, USA.

    Google Scholar 

  25. Olaniran, A. O., D. Pillay, and B. Pillay (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities.Chemosphere 55: 27–33.

    Article  CAS  Google Scholar 

  26. Stucki, G., U. Krebser, and T. Leisinger (1983) Bacterial growth on 1,2-dichloroethane.Experientic 39: 1271–1273.

    Article  CAS  Google Scholar 

  27. van den Wijngaard, A. J., K. W. van der Kamp, J. van der Ploeg, F. Pries, B. Kazemier, and D. B. Janssen (1992) Degradation of 1,2-dichloroethane byAncylobacter aquaticus and other facultative methylotrophs.Appl. Environ. Microbiol. 58: 976–983.

    Google Scholar 

  28. Verhagen, C., E. Smit, D. B. Janssen, and J. D. van Elsas (1995) Bacterial dichloropropene degradation in soil: screening of soils and involvement of plasmids carrying thedhlA gene.Soil Biol. Biochem. 27: 1547–1557.

    Article  CAS  Google Scholar 

  29. Olaniran, A. O., D. Pillay and B. Pillay (2005) Characterization of two bacteria isolated from a wastewater treatment plant in South Africa for aerobic dehalogenation of some aliphatic chlorinated compounds.Int. J. Environ. Stud. 62: 59–68.

    Article  CAS  Google Scholar 

  30. Tezuka, Y., N. Ishii, K.-I. Kasuya, and H. Mitomo (2004) Degradation of poly(ethylene succinate) by mesophilic bacteria.Polym. Degrad. Stab. 84: 115–121.

    Article  CAS  Google Scholar 

  31. Zhang, H., A. Kallimanis, A. I. Koukkou, and C. Drainas (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils.Appl. Microbiol. Biotechnol. 65: 124–131.

    Article  CAS  Google Scholar 

  32. Kulakova, A. N., M. J. Larkin, and L. A. Kulakov (1997) The plasmid-located haloalkane dehalogenase gene fromRhodococcus rhodochrous NCIMB 13064.Microbiology 143: 109–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Olaniran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olaniran, A.O., Naidoo, S., Masango, M.G. et al. Aerobic biodegradation of 1,2-dichloroethane and 1,3-dichloropropene by bacteria isolated from a pulp mill wastewater effluent in South Africa. Biotechnol. Bioprocess Eng. 12, 276–281 (2007). https://doi.org/10.1007/BF02931104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931104

Keywords

Navigation