Skip to main content
Log in

Acidification of the Culture Medium by Products of Glucose Metabolism Inhibits the Synthesis of Heterologous Extracellular α-amylase by Bacillus subtilis 168

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The synthesis of α-amylase AmyM3 from B. flexus 406 in the recombinant strain B. subtilis 168-28 was significantly repressed during submerged cultivation in nutrient medium supplemented with 1% glucose. Repression of α-amylase synthesis by glucose in B. subtilis cells is observed at the level of transcription and is mediated by the catabolite control protein CcpA. The effect of catabolite repression was eliminated after the deletion of a putative CRE site in the amyM3 gene, but the amount of extracellular α-amylase still significantly decreased in the presence of glucose. It was shown that, despite the high level of amyM3 gene activity, a shift in the cultivation medium pH to 5.8–6.0 due to glucose-overflow metabolites excreted by B. subtilis interferes with the synthesis of active extracellular α-amylase, which probably affects postsecretory folding of the enzyme. This observation is a newly demonstrated facet of the CcpA-mediated effect of preferentially utilized sugars on extracellular α-amylase production in Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Deutscher, J., Curr. Opin. Microbiol., 2008, vol. 11, no. 2, pp. 87–93.

    Article  CAS  Google Scholar 

  2. Fujita, Y., Boisci. Biotechnol. Biochem., 2009, vol. 73, no. 2, pp. 245–259.

    Article  CAS  Google Scholar 

  3. Lorca, G.L., Chung, Y.J., Barabote, R.D., Weyler, W., Schilling, C.H., and Saier, M.H., Jr., J. Bacteriol., 2005, vol. 187, no. 22, pp. 7826–7839.

    Article  CAS  Google Scholar 

  4. Weickert, M.J. and Chambliss, G.H., Proc. Natl. Acad. Sci. U S A, 1990, vol. 87, no. 16, pp. 6238–6242.

    Article  CAS  Google Scholar 

  5. Kachan, A.V. and Evtushenkov, A.N., Centr. Eur. J. Biol., 2013, vol. 8, no. 4, pp. 346–356.

    CAS  Google Scholar 

  6. Nicholson, W.L. and Chambliss, G.H., J. Bacteriol., 1985, vol. 161, no. 3, pp. 875–881.

    Article  CAS  Google Scholar 

  7. Chambers, S.P., Prior, S.E., Barstow, D.A., and Minton, N.P., Gene, 1988, vol. 68, no. 1, pp. 139–149.

    Article  CAS  Google Scholar 

  8. Maniatis, T., Fritsch, E. F., and Sambrook, J., Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982.

    Google Scholar 

  9. Vagner, V., Dervyn, E., and Ehrlich, S.D., Microbiology, 1998, vol. 144, no. 11, pp. 3097–3104.

    Article  CAS  Google Scholar 

  10. Spizizen, J. and Anagnostopoulos, C., J. Bacteriol., 1961, vol. 81, no. 5, pp. 741–746.

    Article  Google Scholar 

  11. Shatalin, K. and Neyfakh, A., FEMS Microbiol. Lett., 2005, vol. 245, no. 2, pp. 315–319.

    Article  CAS  Google Scholar 

  12. Kulik, E.V., Selezneva, Yu.V., Kachan, A.V., Rus’, O.B., and Evtushenkov, A.N., Izv. Nats. Akad. Nauk Belarusi, Ser. Biol. Nauk, 2020, vol. 65, no. 3, pp. 319–327.

    Google Scholar 

  13. Ferrari, E., Howard, S.M., and Hoch, J.A., J. Bacteriol., 1986, vol. 166, no. 1, pp. 173–179.

    Article  CAS  Google Scholar 

  14. Sierro, N., Makita, Y., de Hoon, M., and Nakai, K., Nucleic Acids Res., 2008, vol. 36, pp. D93–D96.

    Article  CAS  Google Scholar 

  15. Grant, C.E., Bailey, T.L., and Noble, W.S., Bioinformatics, 2011, vol. 27, no. 7, pp. 1017–1018.

    Article  CAS  Google Scholar 

  16. Speck, E.L. and Freese, E., J. Gen. Microbiol., 1973, vol. 78, no. 2, pp. 261–275.

    Article  CAS  Google Scholar 

  17. Blencke, H.-M., Homuth, G., Ludwig, H., Mader, U., Hecker, M., and Stülke, J., Metab. Eng., 2003, vol. 5, no. 2, pp. 133–149.

  18. Turinsky, A.J., Moir-Blais, T.R., Grundy, F.J., and Henkin, T.M., J. Bacteriol., 2000, vol. 182, no. 19, pp. 5611–5614.

    Article  CAS  Google Scholar 

  19. Sonenshein, A.L., Nat. Rev. Microbiol., 2007, vol. 5, no. 12, pp. 917–927.

    Article  CAS  Google Scholar 

  20. Vitikainen, M., Hyyryläinen, H.-L., Kivimäki, A., Kontinen, V.P., and Sarvas, M., J. Appl. Microbiol., 2005, vol. 99, no. 2, pp. 363–375.

    Article  CAS  Google Scholar 

  21. Hyyrylainen, H.-L., Bolhuis, A., Darmon, E., Muukkonen, L., Koski, P., Vitikainen, M., Sarvas, M., Prágai, Z., Bron, S., van Dijl, J.M., and Konti-nen, V.P., Mol. Microbiol., 2001, vol. 41, no. 5, pp. 1159–1172.

    Article  CAS  Google Scholar 

  22. Manabe, K., Kageyama, Y., Tohata, M., Ara, K., Ozaki, K., and Ogasawara, N., Microb. Cell Fact., 2012, vol. 11, p. 74. https://doi.org/10.1186/1475-2859-11-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out within the framework of the assignment of the state program of scientific research “Biotechnology” for 2018–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kachan.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachan, A.V., Evtushenkov, A.N. Acidification of the Culture Medium by Products of Glucose Metabolism Inhibits the Synthesis of Heterologous Extracellular α-amylase by Bacillus subtilis 168 . Appl Biochem Microbiol 57, 443–451 (2021). https://doi.org/10.1134/S0003683821040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821040062

Keywords:

Navigation