Skip to main content
Log in

Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasyukova, N.I. and Ozeretskovskaya, O.L., Russ. J. Plant Physiol., 2009, vol. 56, no. 5, pp. 581–590.

    Article  CAS  Google Scholar 

  2. Wasternack, C. and Hause, B., Ann. Bot., 2013, vol. 111, no. 6, pp. 1021–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K., Plant Cell, 2007, vol. 19, no. 7, pp. 2225–2245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo, J., Pang, Q., Wang, L., Yu, P., Li, N., and Yan, X., Proteome Sci., 2012, vol. 10, no. 1, pp. 1–13.

    Article  Google Scholar 

  5. Laurie-Berry, N., Joardar, V., Street, I.H., and Kunkel, B.N., Mol. Plant Microbe Interact., 2006, vol. 19, no. 7, pp. 789–800.

    Article  CAS  PubMed  Google Scholar 

  6. Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E., and Abdala, G., Plant Growth Regul., 2003, vol. 41, no. 2, pp. 149–158.

    Article  CAS  Google Scholar 

  7. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., and Close, T.J., Plant Cell Environ., 2007, vol. 30, no. 4, pp. 410–421.

    Article  CAS  PubMed  Google Scholar 

  8. Shakirova, F.M., Sakhabutdinova, A.R., Ishdavletova, R.S., and Lastochkina, O.V., Agrokhimiya, 2010, no. 7, pp. 26–26.

    Google Scholar 

  9. Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N.N., J. Exp. Bot., 2011, vol. 62, no. 14, pp. 4875–4887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramegowda, V., Senthil-Kumar, M., Udayakumar, M., and Mysore, K.S., BMC Plant Biol., 2013, vol. 13 (193). doi: 10.1186/1471-2229-13-193

    Google Scholar 

  11. Ismail, A., Riemann, M., and Nick, P., J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2127–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramirez, V., Coego, A., Lopez, A., Agorio, A., Flors, V., and Vera, P., Plant J., 2009, vol. 58, no. 4, pp. 578–591.

    Article  CAS  PubMed  Google Scholar 

  13. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Plant Cell, 2003, vol. 15, no. 1, pp. 63–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ton, J., Flors, V., and Mauch-Mani, B., Trends Plant Sci., 2009, vol. 14, no. 6, pp. 310–317.

    Article  CAS  PubMed  Google Scholar 

  15. Lackman, P., Gonzalez-Guzman, M., Tilleman, S., Carqueijeiro, I., Perez, A.C., Moses, T., Seo, M., Kanno, Y., Hakkinen, S.T., Montagu, M.C.E.V., Thevelein, J.M., Maaheimo, H., Oksman-Caldentey, K.M., Rodriguez, P.L., Rischer, H., and Goossens, A., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 14, pp. 5891–5896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kavi Kishor, P.B. and Sreenivasulu, N., Plant Cell Environ., 2014, vol. 37, no. 2, pp. 300–311.

    Article  CAS  PubMed  Google Scholar 

  17. Carcia, A.B., Engler, J.A., Iyer, S., Gerats, T., Van Montagu, M., and Caplan, A.B., Plant Physiol., 1997, vol. 115, no. 1, pp. 159–169.

    Google Scholar 

  18. Khlestkina, E.K., Cereal Res. Commun., 2013, vol. 41, no. 2, pp. 185–198.

    Article  CAS  Google Scholar 

  19. Iqbal, N., Umar, S., Khan, N.A., and Khan, M.I.R., Environ. Exp. Bot., 2014, vol. 100, no. 1, pp. 34–42.

    Article  CAS  Google Scholar 

  20. Sheteawi, S.A., Int. J. Agri. Biol., 2007, vol. 9, no. 3, pp. 473–478.

    CAS  Google Scholar 

  21. Zhao, M.L., Wang, J.N., Shan, W., Fan, J.G., Kuang, J.F., Wu, K.Q., Li, X.P., Chen, W.X., He, F.Y., Chen, J.Y., and Lu, W.J., Plant Cell Environ., 2013, vol. 36, no. 1, pp. 30–51.

    Article  PubMed  Google Scholar 

  22. Li, T., Jia, K.P., Lian, H.L., Yang, X., Li, L., and Yang, H.Q., Biochem. Biophys. Res. Commun., 2014, vol. 454, no. 1, pp. 78–83.

    Article  CAS  PubMed  Google Scholar 

  23. Yastreb, T.O., Kolupaev, Yu.E., Shvidenko, N.V., Lugovaya, A.A., and Dmitriev, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 4, pp. 451–454.

    Article  CAS  Google Scholar 

  24. Gibeaut, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Plant Physiol., 1997, vol. 115, no. 2, pp. 317–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semchuk, N.M., Vasylyk, Yu.V., Lushchak, Ok.V., and Lushchak, V.I., Ukr. Biokhim. Zh., 2012, vol. 84, no. 4, pp. 41–48.

    CAS  Google Scholar 

  26. Merzlyak, M.N., Pogosyan, S.I., Yuferova, S.G., and Shevyreva, V.A., Biol. Nauki, 1978, no. 9, pp. 86–86.

    Google Scholar 

  27. Zhao, K., Fan, H., Zhou, S., and Song, J., Plant Sci., 2003, vol. 165, no. 4, pp. 837–844.

    Article  CAS  Google Scholar 

  28. Kolupaev, Yu.E., Ryabchun, N.I., Vainer, A.A., Yastreb, T.O., and Oboznyi, A.I., Russ. J. Plant Physiol., 2015, vol. 62, no. 4, pp. 499–506.

    Article  CAS  Google Scholar 

  29. Bates, L.S., Walden, R.P., and Tear, G.D., Plant Soil, 1973, vol. 39, no. 1, pp. 205–210.

    Article  CAS  Google Scholar 

  30. Nogues, S. and Bakern, R., J. Exp. Bot., 2000, vol. 51, no. 348, pp. 1309–1317.

    Article  CAS  PubMed  Google Scholar 

  31. Pietrini, F. and Massacci, A., Photosynth. Res., 1998, vol. 58, no. 3, pp. 213–219.

    Article  CAS  Google Scholar 

  32. Munns, R. and Tester, M., Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  33. Havaux, M. and Kloppstech, K., Planta, 2001, vol. 213, no. 6, pp. 953–966.

    Article  CAS  Google Scholar 

  34. Gould, K.S. and Lister, C., in Flavonoids: Chemistry, Biochemistry, and Applications, Andersen, O.M. and Markham, K.R., Eds., Boca Raton: Taylor and Francis Group, 2006, pp. 397–442.

  35. Szabados, L. and Savoure, A., Trends Plant Sci., 2009, vol. 15, no. 2, pp. 89–97.

    Article  PubMed  Google Scholar 

  36. Yang, S.L., Shan-Shan, L., and Gong, M., J. Plant Physiol., 2009, vol. 166, no. 15, pp. 1694–1699.

    Article  CAS  PubMed  Google Scholar 

  37. Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A., Plant Physiol., 2004, vol. 134, no. 4, pp. 1536–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., Sriranganayakulu, G., Reddy, P.C., and Sudhakar, C., Biol. Plant., 2006, vol. 50, no. 2, pp. 219–226.

    Article  CAS  Google Scholar 

  39. Neill, S.O. and Gould, K.S., Functional Plant Biol., 2003, vol. 30, no. 8, pp. 865–873.

    Article  CAS  Google Scholar 

  40. Dmitriev, A.P., Kovbasenko, R.V., Avdeeva, L.V., Lapa, S.V., and Kovbasenko, V.M., Signal’nye sistemy rastenii i formirovanie ustoichivosti protiv bioticheskogo stressa (Signaling Systems of Plants and Formation of Resistance to Biotic Stress), Kiev: Feniks, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dmitriev.

Additional information

Original Russian Text © T.O. Yastreb, Yu.E. Kolupaev, A.A. Lugovaya, A.P. Dmitriev, 2016, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2016, Vol. 52, No. 2, pp. 223–229.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastreb, T.O., Kolupaev, Y.E., Lugovaya, A.A. et al. Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling. Appl Biochem Microbiol 52, 210–215 (2016). https://doi.org/10.1134/S0003683816020186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816020186

Keywords

Navigation