Skip to main content
Log in

Altimetry Data Assimilation Into a Numerical Model of Ocean Dynamics in the South Atlantic

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

The data assimilation (DA) of satellite observations of the ocean level from the Archiving Validating and Interpolating Satellite Observations (AVISO) into the IWM model (G.I. Marchuk Institute of Computational Mathematics) of the Russian Academy of Sciences is considered. An original DA method is used that generalizes the well-known Kalman algorithm, called by the authors the Generalized Kalman filter (GKF). Various fields of model characteristics are constructed and analyzed in the South Atlantic region, in particular, level fields, ocean surface temperature (OST) and current velocity fields on the surface. Their spatiotemporal variability is studied before and after the assimilation of observational data. The spatiotemporal variability of the model and observed level and temperature of the ocean surface in the South Atlantic is also compared. The similarities and differences of these fields are analyzed. The comparisons with other models confirm the adequateness of the ocean field simulation with the help of the DA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Numerical algorithm for variational assimilation of sea surface temperature data,” Comput. Math. Math. Phys. 48, 1293–1312 (2008). https://doi.org/10.1134/S0965542508080046

    Article  Google Scholar 

  2. K. P. Belyaev, A. A. Kuleshov, I. N. Smirnov, and C. A. S. Tanajura, “Comparison of data assimilation methods in hydrodynamics ocean circulation models,” Math. Models Comput. Simul. 11, 564–574 (2019). https://doi.org/10.1134/S2070048219040045

    Article  Google Scholar 

  3. K. P. Belyaev, C. A. S. Tanajura, and N. P. Tuchkova, “Comparison of methods for ARGO drifters data assimilation into a hydrodynamical model of the ocean,” Oceanology (Engl. Transl.) 52, 593–603 (2012). https://doi.org/10.1134/S0001437012050025

  4. L. S. Gandin, Objective Analysis of Meteorological Fields (Gidrometeoizdat, Leningrad, 1963) [in Russian].

    Google Scholar 

  5. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes (Mir, Moscow, 1977; Dover, New York, 1996).

  6. I. D. Deinego1, I. Ansorge, K. P. Belyaev, and N. A. Dianskii, “Spatial-temporal variability of the model characteristics in the Southern Atlantic,” Morsk. Gidrofiz. Zh. 35 (6), 549–562 (2019). https://doi.org/10.22449/0233-7584-2019-6-572-584

  7. V. V. Knysh, S. G. Demyshev, G. K. Korotaev, and A. S. Sarkisyan, “Method and results of assimilation of climatic data on temperature, salinity, and sea level into a numerical model of the Black Sea,” Izv., Atmos. Ocean. Phys. 43, 363–377 (2007). https://doi.org/10.1134/S0001433807030115

    Article  Google Scholar 

  8. G. I. Marchuk, B. E. Paton, G. K. Korotaev, and V. B. Zalesny, “Data-computing technologies: a new stage in the development of operational oceanography,” Izv., Atmos. Ocean. Phys. 49, 579–591 (2013). https://doi.org/10.1134/S000143381306011X

    Article  Google Scholar 

  9. E. G. Morozov, A. N. Demidov, and R. Yu. Tarakanov, “Transport of Antarctic waters in the deep channels of the Atlantic Ocean,” Dokl. Earth Sci. 423, 1286–1289 (2008).

    Article  Google Scholar 

  10. A. V. Remeslo, E. G. Morozov, V. G. Neiman, and P. P. Chernyshkov, “Structure and variability of the Falkland Current,” Dokl. Earth Sci. 399, 1156–1159 (2004).

    Google Scholar 

  11. V. A. Rozhkov, Statistical Hydrometeorology, Part 1: Thermodynamics (St. Petersburg State Univ., St. Petersburg, 2013) [in Russian].

  12. A. A. Samarskii and A. P. Mikhailov, Mathematical Modeling: Ideas, Methods, and Examples, 2nd ed. (Fizmatlit, Moscow, 2001) [in Russian]. ISBN 5-9221-0120-X

    Google Scholar 

  13. K. Belyaev, A. Kuleshov, N. Tuchkova, and C. A. Souza Tanajura, “An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics,” Math. Comput. Model. Dyn. Syst. 24 (1), 12–25 (2018). https://doi.org/10.1080/13873954.2017.1338300

    Article  Google Scholar 

  14. K. Belyaev and C. A. Souza Tanajura, “On the correction of perturbations due to data assimilation in ocean circulation models,” Appl. Math. Model. 29 (7), 690–709 (2005). https://doi.org/10.1016/j.apm.2004.10.001

    Article  Google Scholar 

  15. G. Evensen, Data Assimilation: The Ensemble Kalman Filter (Springer-Verlag, Berlin, 2009). https://doi.org/10.1007/978-3-642-03711-5.

  16. M. Ghil and P. Malanotte-Rizzoli, “Data assimilation in meteorology and oceanography,” Adv. Geophys. 33, 141–266 (1991). https://doi.org/10.1016/S0065-2687(08)60442-2

    Article  Google Scholar 

  17. V. Gouretski and F. Reseghetti, “On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database,” Deep Sea Res., Part I 57, 812–833 (2010). https://doi.org/10.1016/j.dsr.2010.03.011

    Article  Google Scholar 

  18. R. Kalman, “A new approach to linear filtering and prediction problems,” ASME J. Basic Eng. 82, 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  Google Scholar 

  19. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc. 77 (3), 437–472. 1996). https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  20. E. Kalnay, Y. Ota, T. Miyoshi, and J. Liu, “A simpler formulation of forecast sensitivity to observations: application to ensemble Kalman filters,” Tellus A 64 (1), (2012). https://doi.org/10.3402/tellusa.v64i0.18462

  21. M. Kaurkin, R. Ibraev, and K. Belyaev, “Assimilation of the AVISO altimetry data into the ocean dynamics model with a high spatial resolution using ensemble optimal interpolation (EnOI),” Izv., Atmos. Ocean. Phys. 54, 56–64 (2018). https://doi.org/10.1134/S0001433818010073

    Article  Google Scholar 

  22. W. G. Large and S. G. Yeager, “The global climatology of an interannually varying air–sea flux data set,” Clim. Dyn. 33, 341–364 (2009). https://doi.org/10.1007/s00382-008-0441-3

    Article  Google Scholar 

  23. G. I. Marchuk and V. B. Zalesny, “A numerical technique for geophysical data assimilation problem using Pontryagin’s principle and splitting-up method,” Russ. J. Num. Anal. Math. Model. 8, 311–326 (1993). https://doi.org/10.1515/rnam.1993.8.4.311

    Article  Google Scholar 

  24. G. Marchuk and V. Zalesny, “Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields,” Izv., Atmos. Ocean. Phys. 48, 15–29 (2012). https://doi.org/10.1134/S0001433812010070

    Article  Google Scholar 

  25. E. G. Morozov, R. Yu. Tarakanov, T. A. Demidova, et al., “Velocity and transport of the Falkland Current at 46° S,” Russ. J. Earth Sci. 16, ES6005 (2016). https://doi.org/10.2205/2016ES000588

    Article  Google Scholar 

  26. S. Moshonkin, V. Zalesny, and A. Gusev, “Simulation of the Arctic—North Atlantic ocean circulation with a two-equation k-omega turbulence parameterization,” J. Mar. Sci. Eng. 6 (95), (2018). https://doi.org/10.3390/jmse6030095

  27. A. Piola and R. Matano, “Ocean currents: Atlantic Western Boundary—Brazil Current/Falkland (Malvinas) Current,” in Reference Module in Earth Systems and Environmental Sciences (Elsevier, Amsterdam, 2017). https://doi.org/10.1016/B978-0-12-409548-9.10541-X

  28. P. Sakov, F. Counillon, L. Bertino, et al., “TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic,” Ocean Sci. 8 (4), 633–656 (2012). https://doi.org/10.5194/os-8-633-2012

    Article  Google Scholar 

  29. A. Schiller and G. B. Brassington, Operational Oceanography in the 21st Century (Springer, Dordrecht, 2011). https://doi.org/10.1007/978-94-007-0332-2

  30. C. A. Souza Tanajura, D. Mignac, A. Novaes Santana, et al., “Observing system experiments over the Atlantic Ocean with the REMO ocean data assimilation system (RODAS) into HYCOM,” Ocean Dyn. 70, 115–138 (2019). https://doi.org/10.1007/s10236-019-01309-8

    Article  Google Scholar 

  31. C. A. Souza Tanajura, A. Novaes Santana, D. Mignac, et al., “The REMO ocean data assimilation system into HYCOM (RODAS_H): general description and preliminary results,” Ocean. Atmos. Res. Lett. 7 (5), 464–470 (2014). https://doi.org/10.3878/j.issn.1674-2834.14.0011

    Article  Google Scholar 

Download references

Funding

This study was carried out under the state assignment of the Institute of Oceanology, Russian Academy of Sciences No. 0128-2021-0002 with the support of the Russian Foundation for Basic Research, grant No. 19-57-60 001 (model calculations). I. Ansorg’s work was supported by grant UID 118901 from the National Science Foundation of the Republic of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Belyaev.

Additional information

Translated by G. Karabyshev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deinego, I.D., Ansorge, I. & Belyaev, K.P. Altimetry Data Assimilation Into a Numerical Model of Ocean Dynamics in the South Atlantic. Oceanology 61, 613–624 (2021). https://doi.org/10.1134/S0001437021050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437021050039

Keywords:

Navigation