Skip to main content
Log in

Assimilation of the AVISO Altimetry Data into the Ocean Dynamics Model with a High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GODAE OceanView Science Team, Work Plan. http://www.godae-oceanview.org.

  2. A. Schiller and G. B. Brassington, Operational Oceanography in the 21st Century (Springer, Dordrecht, 2011).

    Book  Google Scholar 

  3. V. I. Agoshkov, V. M. Ipatova, V. B. Zalesny, E. I. Parmuzin, and V. P. Shutyaev, “Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution,” Izv., Atmos. Ocean. Phys. 46 (6), 677–712 (2010).

    Article  Google Scholar 

  4. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution,” 49 (6), 592–602 (2013).

    Google Scholar 

  5. G. Evensen, Data Assimilation—The Ensemble Kalman Filter (Springer, Berlin, 2009).

    Google Scholar 

  6. P. J. Van Leeuwen, “Particle filtering in geophysical systems,” Mon. Weather Rev. 137, 4089–4114 (2009).

    Article  Google Scholar 

  7. P. J. Van Leeuwen, “Efficient nonlinear data-assimilation in geophysical fluid dynamics,” Comput. Fluids 46, 52–58 (2011).

    Article  Google Scholar 

  8. K. Belyaev, C. A. S. Tanajura, and J. J. O’Brien, “Application of the Fokker-Planck equation to data assimilation into hydrodynamical models,” J. Math. Sci. 99 (4), 1393–1402 (2000).

    Article  Google Scholar 

  9. G. I. Marchuk and V. V. Penenko, “Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment,” in Modelling and Optimization of Complex Systems: Proceedings of the IFIP-TC7 Working Conference, Ed. by G. I. Marchuk, (Springer, New York, 1978), pp. 240–252.

    Google Scholar 

  10. V. V. Penenko and N. N. Obraztsov, “Variational method for the adaptation of the fields of meteorological variables,” Meteorol. Gidrol., No. 11, 1–11 (1976).

    Google Scholar 

  11. V. V. Knysh, G. K. Korotaev, A. I. Mizyuk, and A. S. Sarkisyan, “Assimilation of hydrological observation data for calculating currents in seas and oceans,” Izv., Atmos. Ocean. Phys. 48 (1), 57–73 (2012).

    Article  Google Scholar 

  12. V. V. Knysh, R. A. Ibrayev, G. K. Korotaev, and N. V. Inyushina, “Seasonal variability of climatic currents in the Caspian Sea reconstructed by assimilation of climatic temperature and salinity into the model of water circulation,” Izv., Atmos. Ocean. Phys. 44 (2), 236–249 (2008).

    Article  Google Scholar 

  13. V. V. Knysh, G. K. Korotaev, and P. N. Lishaev, “A technique for using the three-dimensional temperature and salinity fields of the Black Sea reconstructed from few altimetry measurement data in operational prognostic models,” Morsk. Gidrofiz. Zh. 188 (2), 53–69 (2016).

    Google Scholar 

  14. G. Larnicol, S. Guinehut, M.-H. Rio, et al., “The global observed ocean products of the French Mercator project,” in Proceedings of the 15 Years of Progress in Radar Altimetry Conference, 2006, SP-614.

    Google Scholar 

  15. C. A. S. Tanajura and K. Belyaev, “A sequential data assimilation method based on the properties of a diffusion-type process,” Appl. Math. Model. 33 (5), 2165–2174 (2009).

    Article  Google Scholar 

  16. R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic Cartesian coordinates,” Ocean Model. 4, 55–88 (2002).

    Google Scholar 

  17. K. P. Belyaev, C. A. S. Tanajura, and N. P. Tuchkova, “Comparison of methods for ARGO drifters data assimilation into a hydrodynamical model of the ocean,” Oceanology (Engl. Transl.) 52 (5), 593–603 (2012).

    Google Scholar 

  18. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  19. P. R. Oke, G. Larnicol, Y. Fujii, et al., “Assessing the impact of observations on ocean forecasts and reanalyses. Part 1: Global studies,” J. Oper. Oceanogr. 8 (1), 49–62 (2015).

    Article  Google Scholar 

  20. M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “ARGO data assimilation into the ocean dynamics model with high spatial resolution using ensemble optimal interpolation (EnOI),” Oceanology (Engl. Transl.) 56 (6), 774–781 (2016).

    Google Scholar 

  21. V. V. Kalmykov and R. A. Ibrayev, “A framework for the ocean—ice—atmosphere—land coupled modeling on massively-parallel architectures,” Vychisl. Metody Program. 14 (2), 88–95 (2013).

    Google Scholar 

  22. V. V. Kalmykov and R. A. Ibrayev, “Fast algorithm for solving the system of shallow water equations on distributed memory computers,” Vestn. Ufim. Gos. Aviats. Tekh. Univ. 17 (5), 252–259 (2013).

    Google Scholar 

  23. S. M. Griffies, A. Biastoch, C. Böning, et al., “Coordinated Ocean—Ice Reference Experiments (COREs),” Ocean Model. 26 (1–2), 1–46 (2009).

    Article  Google Scholar 

  24. C. Schrum and J. Backhaus, “Sensitivity of atmosphere—ocean heat exchange and heat content in North Sea and Baltic Sea,” Tellus A 51 (4), 526–549 (1999).

    Article  Google Scholar 

  25. V. V. Kalmykov, R. A. Ibrayev, and K. V. Ushakov, “Problems and challenges in building a high-resolution model of the Earth system,” in Supercomputer Technologies in Science, Education, and Industry, Ed. by V. A. Sadovnichii, G. I. Savin, and Vl. V. Voevodin (MGU, Moscow, 2014), pp. 14–22 [in Russian].

    Google Scholar 

  26. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° model of the World Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 37–46 (2012).

    Article  Google Scholar 

  27. K. V. Ushakov, T. B. Grankina, and R. A. Ibrayev, “Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment” Izv., Atmos. Ocean. Phys. 52 (4), 365–375 (2016).

    Article  Google Scholar 

  28. K. V. Ushakov, R. A. Ibrayev, and V. V. Kalmykov, “Simulation of the World Ocean climate with a massively parallel numerical model,” Izv., Atmos. Ocean. Phys. 51 (4), 362–380 (2015).

    Article  Google Scholar 

  29. M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming,” Russ. Meteorol. Hydrol. 41 (7), 479–486 (2016).

    Article  Google Scholar 

  30. P. Sakov and P. A. Sandery, “Comparison of EnOI and EnKF regional ocean reanalysis systems,” Ocean Model. 89, 45–60 (2015).

    Article  Google Scholar 

  31. P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “Ocean data assimilation: A case for ensemble optimal interpolation,” Aust. Meteorol. Oceanogr. J. 59, 67–76 (2010).

    Article  Google Scholar 

  32. P. Sakov, F. Counillon, L. Bertino, et al., “TOPAZ4: An ocean—sea ice data assimilation system for the North Atlantic and Arctic,” Ocean Sci. 8, 633–656 (2012).

    Article  Google Scholar 

  33. M. Kaurkin, R. Ibrayev, and A. Koromyslov, “EnOI-based data assimilation technology for satellite observations and ARGO float measurements in a high resolution global ocean model using the CMF platform,” in Supercomputing. RuSCDays 2016, Ed. by V. Voevodin and S. Sobolev (Springer, 2016), pp. 57-66.

  34. V. V. Kalmykov and R. A. Ibrayev, “CMF—A framework for a high-resolution model of the Earth system,” in Proceedings of the 1st Conference on Supercomputing (RusCDays) (MGU, Moscow, 2015), pp. 34–40 [in Russian].

    Google Scholar 

  35. J. I. Antonov, D. Seidov, T. P. Boyer, et al., World Ocean Atlas 2009, Ed. by S. Levitus (NESDIS, U.S. Government Printing Office, Washington, D.C., 2010).

  36. W. Large and S. Yeager, “The global climatology of an interannually varying air—sea flux data set,” Clim. Dyn. 33 (2–3), 341–364 (2009).

    Article  Google Scholar 

  37. C. A. S. Tanajura, A. N. Santana, D. Mignac, L. N. Lima, K. Belyaev, and X. Ji-Ping, “The REMO ocean data assimilation system into HYCOM (RODAS_H): General description and preliminary results,” Atmos. Ocean. Sci. Lett. 7 (5), 464–470 (2014).

    Article  Google Scholar 

  38. C. A. S. Tanajura, L. N. Lima, and K. P. Belyaev, “Assimilation of satellite surface-height anomalies data into a hybrid coordinate ocean model (HYCOM) over the Atlantic Ocean,” Oceanology (Engl. Transl.) 55 (5), 667–678 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Kaurkin.

Additional information

Original Russian Text © M.N. Kaurkin, R.A. Ibrayev, K.P. Belyaev, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 1, pp. 64–72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaurkin, M.N., Ibrayev, R.A. & Belyaev, K.P. Assimilation of the AVISO Altimetry Data into the Ocean Dynamics Model with a High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI). Izv. Atmos. Ocean. Phys. 54, 56–64 (2018). https://doi.org/10.1134/S0001433818010073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818010073

Keywords

Navigation