Skip to main content
Log in

Functional Activity of Phytoplankton and Optical Properties of Suspended Particulate Matter in Onega Bay of the White Sea

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The phytoplankton activity was analyzed in June 2015 in Onega Bay of the White Sea. The chlorophyll a concentration, as well as cell abundance and cell biomass, were assessed in natural phytoplankton samples and individually for the picoplankton fraction. These data were compared with the results of additional optical measurements for the same water samples. A strong correlation (R2 = 0.82) was found between chlorophyll absorbance (~680 nm, absorbance spectra) and in vivo chlorophyll fluorescence intensity. Мicroalgae had a high level of photosynthetic efficiency (Fv/Fm > 0.4). The picoplankton fraction was characterized by less efficient photosynthesis, probably due to the presence of cyanobacteria. The picoplankton fraction contributed a few percent to the total biomass, whereas its contribution to the total chlorophyll fluorescence intensity reached up to 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. A. Belevich, L. V. Ilyash, A. V. Zimin, et al., “Peculiarities of summer phytoplankton spatial distribution in Onega Bay of the White Sea under local hydrophysical conditions,” Moscow Univ. Biol. Sci. Bull. 71, 135–140 (2016).

    Article  Google Scholar 

  2. T. A. Belevich, L. V. Ilyash, I. A. Milyutina, et al., “Phototrophic picoeukaryotes of Onega Bay, the White Sea: abundance and species composition,” Moscow Univ. Biol. Sci. Bull. 72, 109–114 (2017).

    Article  Google Scholar 

  3. L. V. Ilyash, T. A. Belevich, A. N. Stupnikova, et al., “Effects of local hydrophysical conditions on the spatial variability of phytoplankton in the White Sea,” Oceanology (Engl. Transl.) 55, 216–225 (2015).

  4. M. D. Kravchishina, Suspended Matter of the White Sea and Its Granulometric Composition (Nauchnyi Mir, Moscow, 2009) [in Russian].

    Google Scholar 

  5. M. D. Kravchishina, V. I. Burenkov, O. V. Kopelevich, et al., “New data on the spatial and temporal variability of the chlorophyll a concentration in the White Sea,” Dokl. Earth Sci. 448, 120–125 (2013).

    Article  Google Scholar 

  6. N. I. Kuznetsova, R. R. Azizbekyan, I. V. Konyukhov, et al., “Inhibition of photosynthesis in cyanobacteria and plankton algae by the bacterium Brevibacillus laterosporus metabolites,” Dokl. Biochem. Biophys. 421, 181–184 (2008).

    Article  Google Scholar 

  7. O. I. Mamaev, Thermohaline Analysis of the World Ocean Waters (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  8. N. V. Mordasova and M. V. Ventsel’, “Specific distribution of phytopigments and biomass of phytoplankton in the White Sea in summer,” in Complex Studies of the White Sea Ecosystem (VNIRO, Moscow, 1994), pp. 83–92.

    Google Scholar 

  9. A. N. Pantyulin, “Dynamics, structure and water masses,” in The White Sea System, Vol. 2: Water Column and Interacting Atmosphere, Cryosphere, River Run-Off, and Biosphere, Ed. by A. P. Lisitsyn (Nauchnyi Mir, Moscow, 2012), pp. 309–379.

  10. S. I. Pogosyan, S. V. Gal’chuk, Yu. V. Kazimirko, et al., “Application of the MEGA-25 fluorimeter for determination of the amount of phytoplankton and analysis of its photosynthetic apparatus,” Voda: Khim. Ekol., No. 6, 34–40 (2009).

  11. S. I. Pogosyan, A. M. Durgaryan, I. V. Konyukhov, et al., “Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: measurements in an integrating sphere cavity,” Oceanology (Engl. Transl.) 49, 866–871 (2009).

  12. S. I. Pogosyan, I. V. Konyukhov, A. B. Rubin, et al., “Effect of nitrogen deficit on growth and photosynthetic apparatus of green algae Chlamydomonas reinhardtii,” Voda: Khim. Ekol., No. 4, 68–76 (2012).

  13. D. A. Romanenkov, A. V. Zimin, A. A. Rodionov, et al., “Variability of the frontal sections and mesoscale dynamics of the waters of the White Sea,” Fundam. Prikl. Gidrofiz. 9 (1), 59–72 (2016).

    Google Scholar 

  14. V. V. Sapozhnikov, N. V. Arzhanova, and N. V. Mordasova, “Hydrochemical features of bioproductivity and production-destruction processes in the White Sea,” in The White Sea System, Vol. 2: Water Column and Interacting Atmosphere, Cryosphere, River Run-Off, and Biosphere, Ed. by A. P. Lisitsyn (Nauchnyi Mir, Moscow, 2012), pp. 433–473.

  15. K. S. Shifrin, Introduction into Ocean Optics (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  16. E. J. Arar and G. B. Collins, Method 445.0 in Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence (US Environmental Protection Agency, Washington, DC, 1997).

    Google Scholar 

  17. R. L. Airs, B. Temperton, C. Sambles, et al., “Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation,” FEBS Lett. 588, 3770–3777 (2014).

    Article  Google Scholar 

  18. L. Behrendt, A. W. Larkum, A. Norman, et al., “Endolithic chlorophyll d-containing phototrophs,” ISME J. 5 (6), 1072–1076 (2011).

    Article  Google Scholar 

  19. K. E. Brainerd and M. C. Gregg, “Surface mixed and mixing layer depths,” Deep Sea Res., Part I 42, 1521–1543 (1995).

    Article  Google Scholar 

  20. S. R. Carpenter, M. M. Elser, and J. J. Elser, “Chlorophyll production, degradation, and sedimentation: implications for paleolimnology,” Limnol. Oceanogr. 31, 112–124 (1986).

    Article  Google Scholar 

  21. M. Chen, Y. Q. Li, D. Birch, and R. D. Willows, “A cyanobacterium that contains chlorophyll fa red-absorbing photopigment,” FEBS Lett. 586, 3249–3254 (2012).

    Article  Google Scholar 

  22. M. Chen, M. Schliep, R. D. Willows, et al., “A red-shifted chlorophyll,” Science 329, 1318–1319 (2010).

    Article  Google Scholar 

  23. S. M. Chiswell, P. H. R. Calil, and P. Boyd, “Spring blooms and annual cycles of phytoplankton: a unified perspective,” J. Plankton Res. 37 (3), 500–508 (2015).

    Article  Google Scholar 

  24. C. J. Daniels, A. J. Poulton, M. Esposito, et al., “Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers,” Biogeosciences 12, 2395–2409 (2015).

    Article  Google Scholar 

  25. S. R. Erga, N. Ssebiyonga, B. Hamre, Q. Frette, E. Hovland, K. Hancke, K. Drinkwater, and F. Rey, “Environmental control of phytoplankton distribution and photosynthetic performance at the Jan Mayen Front in the Norwegian Sea,” J. Mar. Syst. 130, 193–205 (2014).

    Article  Google Scholar 

  26. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Princeton University Press, Princeton, 2007).

    Book  Google Scholar 

  27. J. Ferland, M. Gosselin, and M. Starr, “Environmental control of summer primary production in the Hudson Bay system: the role of stratification,” J. Mar. Syst. 88, 385–400 (2011.

    Article  Google Scholar 

  28. F. Gan and D. A. Bryant, “Adaptive and acclimative responses of cyanobacteria to far-red light,” Environ. Microbiol. 17, 3450–3465 (2015).

    Article  Google Scholar 

  29. M. Garrido, P. Cecchi, A. Vaquer, and V. Pasqualini, “Effects of sample conservation on assessment of the photosynthetic efficiency of phytoplankton using PAM fluorometry,” Deep Sea Res., Part I 71, 38–48 (2013).

    Article  Google Scholar 

  30. S. L. C. Giering, R. Sanders, A. P. Martin, et al., “High export via small particles before the onset of the North Atlantic spring bloom,” J. Geophys. Res.: Oceans 121, 6929–6945 (2016).

    Article  Google Scholar 

  31. H. Hillebrand, C. D. Dürselen, D. Kirschtel, et al., “Biovolume calculation for pelagic and benthic microalgae,” J. Phycol. 5, 403–424 (1999).

    Article  Google Scholar 

  32. O. Hammer, D. A. T. Harper, and P. D. Ryan, “Past: Paleontological statistics software package for education and data analysis,” Palaeontol. Electron. 4 (1), 1–9 (2001).

    Google Scholar 

  33. S. Huang, S. W. Wilhelm, R. Harvey, et al., “Novel lineages of Prochlorococcus and Synechococcus in the global oceans,” ISME J. 6, 285–297 (2012).

    Article  Google Scholar 

  34. B. Klein, W. W. C. Gieskes, and G. G. Kraay, “Digestion of chlorophylls and carotenoids by the marine protozoan Oxyrrhis marina studied by HPLC analysis of algal pigments,” J. Plankton Res. 8, 827–836 (1986).

    Article  Google Scholar 

  35. J. C. Kromkamp and R. M. Forster, “The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology,” Eur. J. Phycol. 38, 103–122 (2003).

    Article  Google Scholar 

  36. W. Litaker, C. S. Duke, B. E. Kenney, and J. Ramus, “Diel chl a and phaeopigments in a shallow tidal estuary: potential role of microzooplankton grazing,” Mar. Ecol.: Prog. Ser. 47, 259–270 (1988).

    Article  Google Scholar 

  37. W. M. Manning and H. H. Strain, “Chlorophyll d, a green pigment of red algae,” J. Biol. Chem. 151, 1–19 (1943).

    Article  Google Scholar 

  38. J. Marshall and F. Schott, “Open-ocean convection: observations, theory, and models,” Rev. Geophys. 37 (1), 1–64 (1999).

    Article  Google Scholar 

  39. S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45, 569–579 (2000).

    Article  Google Scholar 

  40. H. Miyashita, H. Ikemoto, N. Kurano, et al., “Chlorophyll d as a major pigment,” Nature 383, 402 (1996).

    Article  Google Scholar 

  41. H. Miyashita, S. Ohkubo, H. Komatsu, et al., “Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, isolated from Lake Biwa,” J. Phys. Chem. Biophys. 4, 149 (2014).

    Article  Google Scholar 

  42. T. Nakane, K. Nakaka, H. Bouman, and T. Platt, “Environmental control of short-term variation in the plankton community of inner Tokyo Bay, Japan,” Estuarine, Coastal Shelf Sci. 78, 796–810 (2008).

    Article  Google Scholar 

  43. T. H. Parsons, M. Takahashi, and B. Hargrave, Biological Oceanographic Processes (Pergamon, Oxford, 1984).

    Google Scholar 

  44. R. Röttgers, “Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton,” Deep Sea Res., Part I 54, 437–451 (2007).

    Article  Google Scholar 

  45. J. M. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationships to plankton size fractions,” Limnol. Oceanogr. 23, 1256–1263 (1978).

    Article  Google Scholar 

  46. E. B. Sherr, B. F. Sherr, and L. Fessenden, “Heterotrophic protists in the Central Arctic Ocean,” Deep Sea Res., Part II 44, 1665–1682 (1997).

    Article  Google Scholar 

  47. J. R. Taylor and R. Ferrari, “Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms,” Limnol. Oceanogr. 56 (6), 2293–2307 (2011).

    Article  Google Scholar 

  48. D. W. Townsend, M. D. Keller, M. E. Sieracki, and S. G. Ackleson, “Spring phytoplankton blooms in the absence of vertical water column stratification,” Nature 360 (6399), 59–62 (1992).

    Article  Google Scholar 

  49. P. G. Verity, C. Y. Robertson, C. R. Tronzo, et al., “Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton,” Limnol. Oceanogr. 37, 1434–1446 (1992).

    Article  Google Scholar 

  50. S. W. Wright, A. Ishikawa, H. J. Marchant, et al., “Composition and significance of picophytoplankton in Antarctic waters,” Polar Biol. 32, 797–808 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.V. Kopelevich, A.N. Khrapko, A.V. Grigor’ev, M.A. Rodionov, E.D. Dobrotina, and A.E. Novikhin for their invaluable help during the expedition.

Funding

The study was supported by the Russian Science Foundation (grant no. 14-17-00800, Shirshov Institute of Oceanology RAS) and the Russian Foundation for Basic Research (project no. 16-05-00502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Konyukhov.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyukhov, I.V., Kotikova, A.F., Belevich, T.A. et al. Functional Activity of Phytoplankton and Optical Properties of Suspended Particulate Matter in Onega Bay of the White Sea. Oceanology 61, 233–243 (2021). https://doi.org/10.1134/S0001437021020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437021020077

Keywords:

Navigation