Skip to main content
Log in

Changes in the Geomagnetic Field and the Evolution of Marine Biota

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Ideas about the geomagnetic field’s influence on evolution and biodiversity are controversial. The quantitative distribution of datum levels of oceanic microplankton during the last 2.0 Ma shows a correlation with geomagnetic reversals. A decrease in field intensity increases cosmic irradiation of the Earth’s surface, which can activate mutagenesis leading to the emergence of new species. Moreover, since the correlation of the geomagnetic field intensity with the composition of the atmosphere, temperature, climate, volcanism, and other environmental conditions was revealed, it is possible to assume its influence on evolutionary processes as part of the overall complex of environmental conditions. Geomagnetic polarity superchrons ended with mantle plume formation, which produced trap eruptions and initiated Phanerozoic mass faunal extinctions. The sources of the geomagnetic field and plume formation leading to trap volcanism are at the boundaries of the Earth’s inner spheres, which explains their correlation. And their correlation with impact events as one of the causes of extinction can be explained by a cosmic primary cause that lies beyond the confines of the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Barash, “Interaction of the reasons for the mass biota extinctions in the Phanerozoic,” Oceanology (Engl. Transl.) 53, 739–749 (2013).

  2. M. S. Barash, O. B. Dmitrenko, G. Kh. Kazarina, et al., “Stratigraphy of Quaternary deposits of the oceans,” in 27th International Geological Congress “Quaternary Geology and Geomorphology”, Sect. C.03. Repts. (Nauka, Moscow, 1984), Vol. 3, pp. 87–108.

  3. N. K. Belisheva and E. Z. Gak, “Role of space ray variation in functions of biological systems,” in Proceedings of the VII International Conference “Ecology and Development of the Northwestern Russia” (St. Petersburg, 2002), pp. 118–129 [in Russian].

  4. V. V. Kuznetsov, Introduction into Physics of Hot Earth (Bering Kamchatka State Univ., Petropavlovsk-Kamchatski, 2008), 336 p. [in Russian].

  5. V. V. Kuznetsov, “Location of the geomagnetic field source,” Vestn. Kamchat. Reg. Assots. Ucheb.-Nauchn. Tsentr, Fiz.-Mat. Nauki, No. 2 (9), 36–43 (2014) [in Russian].

    Google Scholar 

  6. N. D. Kuznetsova and V. V. Kuznetsov, “Inversions and excursions of the geomagnetic field: geophysical factors of speciation,” Vestn. Tomsk. Gos. Univ., No. 354, 199–204 (2012) [in Russian].

  7. A. Yu. Kurazhkovskii, N. A. Kurazhkovskaya, B. I. Klain, and V. Yu. Bragin, “Variations of the geomagnetic field during the Cretaceous,” Russ. Geol. Geophys. 53, 712–719 (2012).

    Article  Google Scholar 

  8. D. M. Pechersky, G. Z. Gurarii, and V. P. Shcherbakov, “Geomagnetic field and life evolution on the Earth,” Zemlya Vselennaya, No. 4, 50–60 (2010) [in Russian].

  9. D. M. Pechersky, A. A. Lyubushin, and Z. V. Sharonova, “On the coherence between changes in biota and geomagnetic reversals in the Phanerozoic,” Izv., Phys. Solid Earth 48, 42–60 (2012).

    Article  Google Scholar 

  10. G. A. Pospelova, “Geomagnetic excursions of the Brunhes chron and global climate oscillations,” Izv., Phys. Solid Earth 36, 619–629 (2000).

    Google Scholar 

  11. A. O. Sizikova and V. S. Zykina, “Morphoscopy of sandy quartz grains and microstructure of Upper Pleistocene loess of the south of Western Siberia, Lozhok transect,” Geol. Miner.-Syr’evye Resur. Sib., No. 1, 41–50 (2014) [in Russian]

  12. A. Aldahan and G. Possnert, “Geomagnetic and climatic variability reflected by 10Be10Be during the Quaternary and late Pliocene,” Geophys. Res. Lett. 30, (2003). https://doi.org/10.1029/2002GL016077

  13. V. Courtillot and P. Olson, “Mantle plumes link magnetic superchrons to phanerozoic mass depletion events,” Earth Planet. Sci. Lett. 260, 495–504 (2007).

    Article  Google Scholar 

  14. H. Fischer, M.-L. Siggaard-Andersen, U. Ruth, et al., “Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition,” Rev. Geophys. 45, 1–26 (2007).

    Article  Google Scholar 

  15. M. Gillman and H. Erenler, “The galactic cycle of extinction,” Int. J. Astrobiol. 7 (1), 17–26 (2008).

    Article  Google Scholar 

  16. B. Glass and B. Heezen, “Tektites and geomagnetic reversals,” Nature 214 (5086), 372–374 (1967).

    Google Scholar 

  17. “Global chronostratigraphical correlation table for the last 2.7 million years,” in 35th International Geological Congress, August 27–September 4, 2016 (Cape Town, 2016). http://www.35igc.org/

  18. D. Gubbins, “The distinction between geomagnetic excursions and reversals,” Geophys. J. Int. 137 (1), F1–F4 (1999).

    Article  Google Scholar 

  19. Y. Isozaki, “Illawarra reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction,” Gondwana Res. 15 (3–4), 421–432 (2009).

    Article  Google Scholar 

  20. R. T. Merrill and P. L. McFadden, “Geomagnetic polarity transitions,” Rev. Geophys. 37 (2), 201–226 (1999).

    Article  Google Scholar 

  21. R. A. Muller and D. E. Morris, “Geomagnetic reversals from impacts on the Earth,” Geophys. Res. Lett. 13 (11), 1177–1180 (1986).

    Article  Google Scholar 

  22. N. R. Nowaczyk, H. W. Arz, U. Frank, et al., “Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments,” Earth Planet. Sci. Lett. 351–352, 54–69 (2012).

    Article  Google Scholar 

  23. N. D. Opdyke and J. E. T. Channell, Magnetic Stratigraphy (Academic, San Diego, 1996).

    Google Scholar 

  24. M. R. Rampino, “Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events,” Mon. Not. R. Astron. Soc. 448, 1816–1820 (2015).

    Article  Google Scholar 

  25. A. P. Roberts, E. J. Rohling, and K. M. Grant, “Atmospheric dust variability from Arabia and China over the last 500,000 years,” Q. Sci. Rev. 30, 3537–3541 (2011).

    Article  Google Scholar 

  26. J. Vandenberghe and G. Nugteren, “Rapid climatic changes recorded in loess successions,” Global Planet. Change 28, 1–9 (2001).

    Article  Google Scholar 

  27. Y. Wei, Z. Pu, Q. Zong, et al., “Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction,” Earth Planet. Sci. Lett. 394, 94–98 (2014).

    Article  Google Scholar 

  28. H.-U. Worm, “A link between geomagnetic reversals and events and glaciations,” Earth Planet. Sci. Lett. 147, 55–67 (1997).

    Article  Google Scholar 

  29. T. Yamazaki and H. Oda, “A Brunhes–Matuyama polarity transition record from anoxic sediments in the South Atlantic (Ocean Drilling Program Hole 1082C),” Earth Planet. Space 53, 817–827 (2001).

    Article  Google Scholar 

Download references

FUNDING

The study was carried out within the State Assignment of FASO Russia (topic nos. 0149-2014-0027 and 0149-2018-0016) with partial support of the program “Evolution of the Organic World and Planetary Processes” (no. 0149-2015-0042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Barash.

Additional information

Translated by A. Carpenter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barash, M.S. Changes in the Geomagnetic Field and the Evolution of Marine Biota. Oceanology 59, 235–241 (2019). https://doi.org/10.1134/S0001437019020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437019020024

Navigation