Skip to main content
Log in

The influence of Tethyan evolution on changes of the Earth’s past environment

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Understanding changes in Earth’s past can provide valuable insights into prediction of its future. An example is the interactions between the internal and external spheres of Earth. The cyclical northward breakup-drift of Gondwana, driven by the opening and closure of Proto-, Paleo-, and Neo-Tethyan oceans, facilitated the transfer of landmasses from the southern to the northern hemisphere, traversing the tropic region. We have observed a compelling correlation between episodic increases in landmass area within the tropic regions (those lying at less than 20° latitude) and a subsequent temperature decrease during the three major glacial periods in the last 500 million years. This phenomenon can be attributed to low latitude regions receiving more solar energy influx on Earth’s surface than high latitude areas. In addition, an increase of landmass in tropic regions (low latitude) attenuates the net energy absorption by the Earth’s surface, consequently impeding the conduction and convection of absorbed energy toward the poles. The result is a decrease in global surface temperature. The tropic regions, benefiting from abundant sunlight, create an ideal environment for the proliferation of marine plankton species. These species are important in the generation of organic-rich sediment. Massive biological debris is therefore deposited on continental margins when a continent drifts across the tropic region. This creates favorable conditions for future hydrocarbon and reservoir formation. Northward subduction of organic-rich sediments during the closure of the Tethyan oceans results in the generation of mafic arc magmas with low oxygen fugacity. This chemical environment helps the mineralization of reduced-type ore deposits such as tungsten, tin, and lithium. Subducted-driven plate tectonics in the Tethys realm changes the distribution of oceans and landmass, subsequently affecting the balance and distribution of solar energy across Earth’s surface. These changes trigger consequential environmental shifts which in turn, impact the composition of rock and mineral along the Eurasian margin due to subduction. Consequently, the Tethyan realm and its history is an ideal natural laboratory for comprehending the processes and changes of the entire Earth’s system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen M B, Armstrong H A. 2008. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol, 265: 52–58

    Article  Google Scholar 

  • Barron E J, Sloan II J L, Harrison C G A. 1980. Potential significance of land-sea distribution and surface albedo variations as a climatic forcing factor; 180 m.y. to the present. Palaeogeogr Palaeoclimatol Palaeoecol, 30: 17–40

    Article  Google Scholar 

  • Becker T W, Faccenna C. 2011. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett, 310: 453–461

    Article  Google Scholar 

  • Brune S, Williams S E, Müller R D. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 10: 941–946

    Article  Google Scholar 

  • Cane M A, Molnar P. 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature, 411: 157–162

    Article  Google Scholar 

  • Cao W, Lee C T A, Lackey J S. 2017. Episodic nature of continental arc activity since 750 Ma: A global compilation. Earth Planet Sci Lett, 461: 85–95

    Article  Google Scholar 

  • Capitanio F A, Morra G, Goes S, Weinberg R F, Moresi L. 2010. India-Asia convergence driven by the subduction of the Greater Indian continent. Nat Geosci, 3: 136–139

    Article  Google Scholar 

  • Copley A, Avouac J P, Royer J Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J Geophys Res, 115: B03410

    Google Scholar 

  • Crutzen P J. 2002. Geology of mankind. Nature, 415: 23

    Article  Google Scholar 

  • Cui Y, Li M, van Soelen E E, Peterse F, Kürschner W M. 2021. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction. Proc Natl Acad Sci USA, 118: e2014701118

    Article  Google Scholar 

  • Davydov V I, Cozar P. 2019. The formation of the Alleghenian Isthmus triggered the Bashkirian glaciation: Constraints from warm-water benthic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol, 531: 108403

    Article  Google Scholar 

  • Ding Y, Chen D, Zhou X, Guo C, Huang T, Zhang G. 2019. Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: Responses to high-frequency sea-level fluctuations in an ‘aragonite-dolomite sea’. Sedimentology, 66: 2511–2537

    Article  Google Scholar 

  • Ernst R E. 2014. Large Igneous Provinces. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Fan J, Shen S, Erwin D H, Sadler P M, MacLeod N, Cheng Q, Hou X, Yang J, Wang X, Wang Y, Zhang H, Chen X, Li G, Zhang Y, Shi Y, Yuan D, Chen Q, Zhang L, Li C, Zhao Y. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367: 272–277

    Article  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Gregor L, Hauck J, Le Quéré C, Luijkx I T, Olsen A, Peters G P, Peters W, Pongratz J, Schwingshackl C, Sitch S, Canadell J G, Ciais P, Jackson R B, Alin S R, Alkama R, Arneth A, Arora V K, Bates N R, Becker M, Bellouin N, Bittig H C, Bopp L, Chevallier F, Chini L P, Cronin M, Evans W, Falk S, Feely R A, Gasser T, Gehlen M, Gkritzalis T, Gloege L, Grassi G, Gruber N, Gürses Ö, Harris I, Hefner M, Houghton R A, Hurtt G C, Iida Y, Ilyina T, Jain A K, Jersild A, Kadono K, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken J I, Landschützer P, Lefèvre N, Lindsay K, Liu J, Liu Z, Marland G, Mayot N, McGrath M J, Metzl N, Monacci N M, Munro D R, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pan N, Pierrot D, Pocock K, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Rodriguez C, Rosan T M, Schwinger J, Séférian R, Shutler J D, Skjelvan I, Steinhoff T, Sun Q, Sutton A J, Sweeney C, Takao S, Tanhua T, Tans P P, Tian X, Tian H, Tilbrook B, Tsujino H, Tubiello F, van der Werf G R, Walker A P, Wanninkhof R, Whitehead C, Willstrand Wranne A, Wright R, Yuan W, Yue C, Yue X, Zaehle S, Zeng J, Zheng B. 2022. Global carbon budget 2022. Earth Syst Sci Data, 14: 4811–4900

    Article  Google Scholar 

  • Frisch W, Meschede M, Blakey R C. 2010. Plate Tectonics: Continental Drift and Mountain Building. Berlin: Springer Science & Business Media

    Google Scholar 

  • Fu X, Yuan L, Wang D, Hou L, Pan M, Hao X, Liang B, Tang Q. 2015. Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika ore field, Sichuan (in Chinese). Miner Depos, 34: 1172–1186

    Google Scholar 

  • Gerlach T. 2011. Volcanic versus anthropogenic carbon dioxide. EoS Trans, 92: 201–202

    Article  Google Scholar 

  • Gernon T M, Hincks T K, Merdith A S, Rohling E J, Palmer M R, Foster G L, Bataille C P, Müller R D. 2021. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat Geosci, 14: 690–696

    Article  Google Scholar 

  • Groves D I, Bierlein F P. 2007. Geodynamic settings of mineral deposit systems. J Geol Soc, 164: 19–30

    Article  Google Scholar 

  • Guo Z T. 2019. Earth System and Evolution: A future frame of Earth Sciences. Chin Sci Bull, 64: 883–884

    Article  Google Scholar 

  • He Z, Li S, Nie H, Yuan Y, Wang H. 2019. The shale gas “sweet window”: “The cracked and unbroken” state of shale and its depth range. Mar Pet Geol, 101: 334–342

    Article  Google Scholar 

  • Hu D, Li M, Zhang X, Turchyn A V, Gong Y, Shen Y. 2020. Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction. Nat Commun, 11: 2297

    Article  Google Scholar 

  • IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel o Climate Change. Geneva, Switzerland. 151

  • IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA. 3056

  • Isbell J L, Henry L C, Gulbranson E L, Limarino C O, Fraiser M L, Koch Z J, Ciccioli P L, Dineen A A. 2012. Glacial paradoxes during the Late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res, 22: 1–19

    Article  Google Scholar 

  • Jagoutz O, Macdonald F A, Royden L. 2016. Low-latitude arc-continent collision as a driver for global cooling. Proc Natl Acad Sci USA, 113: 4935–4940

    Article  Google Scholar 

  • Jing X, Yang Z, Mitchell R N, Tong Y, Zhu M, Wan B. 2022. Ordovician-Silurian true polar wander as a mechanism for severe glaciation and mass extinction. Nat Commun, 13: 7941

    Article  Google Scholar 

  • Jones P D, Wigley T M L, Folland C K, Parker D E, Angell J K, Lebedeff S, Hansen J E. 1988. Evidence for global warming in the past decade. Nature, 332: 790

    Article  Google Scholar 

  • Kent D V, Muttoni G. 2008. Equatorial convergence of India and early Cenozoic climate trends. Proc Natl Acad Sci USA, 105: 16065–16070

    Article  Google Scholar 

  • Kesler S E, Wilkinson B H. 2015. Tectonic-diffusion estimates of global mineral resources: Extending the method: Granitic tin deposits. Geol Soc Lond Spec Publ, 393: 277–290

    Article  Google Scholar 

  • Kump L R, Arthur M A, Patzkowsky M E, Gibbs M T, Pinkus D S, Sheehan P M. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 152: 173–187

    Article  Google Scholar 

  • Kump L R, Junium C, Arthur M A, Brasier A, Fallick A, Melezhik V, Lepland A, CČrne A E, Luo G. 2011. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science, 334: 1694–1696

    Article  Google Scholar 

  • Le Pichon X, Şengör AMC, Imren C. 2019. Pangea and the lower mantle. Tectonics, 38: 3479–3504

    Article  Google Scholar 

  • Lee C T A, Yeung L Y, McKenzie N R, Yokoyama Y, Ozaki K, Lenardic A. 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci, 9: 417–424

    Article  Google Scholar 

  • Lenton T M, Crouch M, Johnson M, Pires N, Dolan L. 2012. First plants cooled the Ordovician. Nat Geosci, 5: 86–89

    Article  Google Scholar 

  • Lenton T M, Held H, Kriegler E, Hall J W, Lucht W, Rahmstorf S, Schellnhuber H J. 2008. Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA, 105: 1786–1793

    Article  Google Scholar 

  • Li W, Liu J, Li S, Jia C, Wang C, Zhou J, Wang C, Xu C, Tan S, Hu J, Zhang R, Gong L, Wang B, Wang Q. 2022. Discovery and mineralization significance of Early Jurassic (beryl- and lepidolite-) spodumene-bearing pegmatites in the Gaduo-Zaduo area of the Yushu region, Northeastern Tibet (in Chinese with English abstract). Geotect Metall, 46: 924–950

    Google Scholar 

  • Li X, Hu Y, Guo J, Lan J, Lin Q, Bao X, Yuan S, Wei M, Li Z, Man K, Yin Z, Han J, Zhang J, Zhu C, Zhao Z, Liu Y, Yang J, Nie J. 2022. A high-resolution climate simulation dataset for the past 540 million years. Sci Data, 9: 371

    Article  Google Scholar 

  • Liu C, Wang R, Wu F, Xie L, Liu X. 2021. Lithium mineralization in Qomolangma: First report of elbaite-lepidolite subtype pegmatite in the Himalaya leucogranite belt (in Chinese with English abstract). Acta Petrol Sin, 31: 3287–3294

    Google Scholar 

  • Macdonald F A, Swanson-Hysell N L, Park Y, Lisiecki L, Jagoutz O. 2019. Arc-continent collisions in the tropics set Earth’s climate state. Science, 364: 181–184

    Article  Google Scholar 

  • Manabe S, Stouffer R J. 1988. Two stable equilibria of a coupled ocean-atmosphere model. J Clim, 1: 841–866

    Article  Google Scholar 

  • Markit I. 2022. Vantage datebase. https://www.IHS.com

  • Martin V M, Morgan D J, Jerram D A, Caddick M J, Prior D J, Davidson J P. 2008. Bang! Month-scale eruption triggering at Santorini Volcano. Science, 321: 1178

    Article  Google Scholar 

  • McKenzie D P. 1969. Speculations on the consequences and causes of plate motions. Geophys J Int, 18: 1–32

    Article  Google Scholar 

  • McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth Planet Sci Lett, 40: 25–32

    Article  Google Scholar 

  • McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C T A. 2016. Continental arc volcanism as the principal driver of ice-house-greenhouse variability. Science, 352: 444–447

    Article  Google Scholar 

  • Merdith A S, Williams S E, Brune S, Collins A S, Müller R D. 2019. Rift and plate boundary evolution across two supercontinent cycles. Glob Planet Change, 173: 1–14

    Article  Google Scholar 

  • Mills B J W, Krause A J, Scotese C R, Hill D J, Shields G A, Lenton T M. 2019. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res, 67: 172–186

    Article  Google Scholar 

  • Mills B J W, Scotese C R, Walding N G, Shields G A, Lenton T M. 2017. Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. Nat Commun, 8: 1110

    Article  Google Scholar 

  • Montañez I P, Poulsen C J. 2013. The Late Paleozoic Ice Age: An evolving paradigm. Annu Rev Earth Planet Sci, 41: 629–656

    Article  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva J C, Valencia V, Ayala C, Pérez-Angel L C, Rodriguez-Parra L A, Ramirez V, Niño H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348: 226–229

    Article  Google Scholar 

  • Müller R D, Mather B, Dutkiewicz A, Keller T, Merdith A, Gonzalez C M, Gorczyk W, Zahirovic S. 2022. Evolution of Earth’s tectonic carbon conveyor belt. Nature, 605: 629–639

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. 2021. Next Generation Earth Systems Science at the National Science Foundation. Washington DC: The National Academies Press

    Google Scholar 

  • National Research Council. 1986. Earth System Science: Overview: A Program for Global Change. Washington DC: The National Academies Press. 50

    Google Scholar 

  • Orcutt B, Daniel I, Dasgupta R. 2019. Deep Carbon: Past to Present. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Pastor-Galán D, Nance R D, Murphy J B, Spencer C J. 2019. Supercontinents: Myths, mysteries, and milestones. Geol Soc Lond Spec Publ, 470: 39–64

    Article  Google Scholar 

  • Poulsen C J. 2002. Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys Res Lett, 29: 1515

    Article  Google Scholar 

  • Qin K Z, Zhao J X, He C T, Shi R Z. 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China. Acta Petrol Sin, 37: 3277–3286

    Article  Google Scholar 

  • Qiu Z, Zou C, Mills B J W, Xiong Y, Tao H, Lu B, Liu H, Xiao W, Poulton S W. 2022. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Commun Earth Environ, 3: 82

    Article  Google Scholar 

  • Richards J P, Şengör AMC. 2017. Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation? Geology, 45: 591–594

    Article  Google Scholar 

  • Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann N E. 2019. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv, 5: eaau6253

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin III F S, Lambin E F, Lenton T M, Scheffer M, Folke C, Schellnhuber H J, Nykvist B, de Wit C A, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder P K, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R W, Fabry V J, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J A. 2009. A safe operating space for humanity. Nature, 461: 472–475

    Article  Google Scholar 

  • Rong J. 1984. Ecostratigraphic evidence of the Upper Prdovician regressive sequences and the effect of glaciation (in Chinese). J Stratigr, 8: 19–29

    Google Scholar 

  • Royer D L, Donnadieu Y, Park J, Kowalczyk J, Godderis Y. 2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am J Sci, 314: 1259–1283

    Article  Google Scholar 

  • Scher H D, Whittaker J M, Williams S E, Latimer J C, Kordesch W E C, Delaney M L. 2015. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature, 523: 580–583

    Article  Google Scholar 

  • Scotese C R, Song H, Mills B J W, van der Meer D G. 2021. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci Rev, 215: 103503

    Article  Google Scholar 

  • Shaw J, Johnston S T. 2016. Oroclinal buckling of the Armorican ribbon continent: An alternative tectonic model for Pangean amalgamation and Variscan orogenesis. Lithosphere, 8: 769–777

    Article  Google Scholar 

  • Sillitoe R H. 2018. Why no porphyry copper deposits in Japan and South Korea? Resour Geol, 68: 107–125

    Article  Google Scholar 

  • Soua M, Chihi H. 2014. Optimizing exploration procedure using Oceanic Anoxic Events as new tools for hydrocarbon strategy in Tunisia. In: Gaci S, Hachay O, eds. Advances in Data, Methods, Models and Their Applications in Oil/Gas Exploration. New York: Science Publishing Group. 25–89

    Google Scholar 

  • Steffen W, Richardson K, Rockström J, Schellnhuber H J, Dube O P, Dutreuil S, Lenton T M, Lubchenco J. 2020. The emergence and evolution of Earth System Science. Nat Rev Earth Environ, 1: 54–63

    Article  Google Scholar 

  • Sun W, Huang R, Li H, Hu Y, Zhang C, Sun S, Zhang L, Ding X, Li C, Zartman R E, Ling M. 2015. Porphyry deposits and oxidized magmas. Ore Geol Rev, 65: 97–131

    Article  Google Scholar 

  • Tackley P J. 2000. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288: 2002–2007

    Article  Google Scholar 

  • Tang C A, Webb A A G, Moore W B, Wang Y Y, Ma T H, Chen T T. 2020. Breaking Earth’s shell into a global plate network. Nat Commun, 11: 3621

    Article  Google Scholar 

  • The Research Group on Development Strategy of Earth Science in China. 2022. Past, Present and Future of a Habitable Earth—The Development Strategy of Earth Science 2021 to 2030. Singapore: Springer

    Book  Google Scholar 

  • Torsvik T H, Cocks L R M. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press. 317

    Google Scholar 

  • Trenberth K E, Fasullo J T, Kiehl J. 2009. Earth’s global energy budget. Bull Amer Meteor Soc, 90: 311–324

    Article  Google Scholar 

  • van Hinsbergen D J J, Steinberger B, Guilmette C, Maffione M, Gürer D, Peters K, Plunder A, McPhee P J, Gaina C, Advokaat E L, Vissers R L M, Spakman W. 2021. A record of plume-induced plate rotation triggering subduction initiation. Nat Geosci, 14: 626–630

    Article  Google Scholar 

  • Veizer J. 2008. Climate, water and CO2: A geological perspective. Mineral mag, 72: 293–294

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88

    Article  Google Scholar 

  • Vérard C, Hochard C, Baumgartner P O, Stampfli G M, Liu M. 2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. J Palaeogeogr, 4: 64–84

    Article  Google Scholar 

  • Voice P J, Kowalewski M, Eriksson K A. 2011. Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. J Geol, 119: 109–126

    Article  Google Scholar 

  • Wan B. 2022. The onset timing of plate tectonics: Controversies, progress, and prospects (in Chinese with English abstract). Chin Sci Bull, 67: 3849–3860

    Article  Google Scholar 

  • Wan B, Chu Y, Chen L, Liang X, Zhang Z, Ao S, Talebian M. 2021. Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: Evidence from an Iranian segment of Gondwana. Earth-Sci Rev, 221: 103788

    Article  Google Scholar 

  • Wan B, Chu Y, Chen L, Zhang Z, Ao S, Talebian M. 2023. When and why the Neo-Tethys subduction initiation along the Eurasian margin: A case study from Iran from a Jurassic Eclogite in Southern Iran. In: Catlos E J, Çemen I, eds. Tectonic Processes: A Global View. New York: AGU/Wiley. 245–260

    Google Scholar 

  • Wan B, Xiao W, Windley B F, Gao J, Zhang L, Cai K. 2017. Contrasting ore styles and their role in understanding the evolution of the Altaids. Ore Geol Rev, 80: 910–922

    Article  Google Scholar 

  • Wan B, Wu F, Chen L, Zhao L, Liang X, Xiao W, Zhu R. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Sci China Earth Sci, 62: 2005–2016

    Article  Google Scholar 

  • Wang H, Gao H, Wang S, Yan Q, Wang Z, Huang L, Qin Y. 2022. Zircon and columbite-tantalite U-Pb geochronology of Li-Be rare metal pegmatite and its geological significance in Muji area, West Kunlun, China (in Chinese with English abstract). Acta Petrol Sin, 38: 1937–1951

    Article  Google Scholar 

  • Wang R C, Wu F Y, Xie L, Liu X C, Wang J M, Yang L, Lai W, Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Sci China Earth Sci, 60: 1655–1663

    Article  Google Scholar 

  • Wang Y Y, Xiao Y, Sun H, Tong F, Gu H O, Lu Y. 2021. Lithium isotope composition of the Carboniferous seawater: Implications for initiating and maintaining the Late Paleozoic ice age. J Asian Earth Sci, 222: 104977

    Article  Google Scholar 

  • Wilson C J N, Hildreth W. 1997. The Bishop Tuff: New insights from eruptive stratigraphy. J Geol, 105: 407–440

    Article  Google Scholar 

  • Worsley T R, Kidder D L. 1991. First-order coupling of paleogeography and CO2, with global surface temperature and its latitudinal contrast. Geology, 19: 1161–1164

    Article  Google Scholar 

  • Wu F Y, Liu X C, Ji W Q, Wang J M, Yang L. 2017. Highly fractionated granites: Recognition and research. Sci China Earth Sci, 60: 1201–1219

    Article  Google Scholar 

  • Wu F Y, Wan B, Zhao L, Xiao W J, Zhu R X. 2020. Tethyan geodynamics. Acta Petrol Sin, 36: 1627–1674

    Article  Google Scholar 

  • Wu J, Kong H, Li H, Algeo T J, Yonezu K, Liu B, Wu Q, Zhu D, Jiang H. 2021. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geol Rev, 139: 104521

    Article  Google Scholar 

  • Xu Z Q, Wang R C, Zhu W B, Qin Y L, Fu X F, Li G W. 2020. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: Scientific problems and significance. Acta Geol Sin, 94: 2177–2189

    Google Scholar 

  • Yang T, Chen J, Hou Z, Xin D, Aghazadeh M. 2023. Multiple volcanic episodes of the Kermanshah forearc basin, SW Iran: A record of the deactivation and re-initiation of Neotethyan subduction involving a mid-ocean ridge. J Geol Soc, 180: jgs2022–028

    Article  Google Scholar 

  • Yang Z M, Cooke D. 2019. Porphyry Cu deposits in China. In: Chang Z, Goldfarb R J, eds. Mineral Deposits of China. Kansas: Allen Press

    Google Scholar 

  • Yin H, Yu J, Luo G, Song H, Xu Z. 2018. Biotic influence on the formation of Icehouse climates in geologic history (in Chinese with English abstract). Earth Sci, 43: 3809–3822

    Google Scholar 

  • Zhang C, Liu C Z, Xu Y, Ji W B, Wang J M, Wu F Y, Liu T, Zhang Z Y, Zhang W Q. 2019. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth Planet Sci Lett, 523: 115707

    Article  Google Scholar 

  • Zhang L, Chen D, Kuang G, Guo Z, Zhang G, Wang X. 2020. Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China. Glob Planet Change, 195: 103350

    Article  Google Scholar 

  • Zhang R, Lehmann B, Seltmann R, Sun W, Li C. 2017. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45: 1095–1098

    Article  Google Scholar 

  • Zhang S H, Shen S Z, Erwin D H. 2022. Latitudinal diversity gradient dynamics during Carboniferous to Triassic icehouse and greenhouse climates. Geology, 50: 1166–1171

    Article  Google Scholar 

  • Zhang X, Chung S L, Lai Y M, Ghani A A, Murtadha S, Lee H Y, Hsu C C. 2019. A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia. Geology, 47: 573–576

    Article  Google Scholar 

  • Zhao K D, Zhang L H, Palmer M R, Jiang S Y, Xu C, Zhao H D, Chen W. 2021. Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids. Miner Depos, 56: 1589–1608

    Article  Google Scholar 

  • Zheng Y F. 2022. Earth System Science of Convergent Plate Margins (in Chinese). Beijing: Science Press

    Google Scholar 

  • Zheng Y F. 2023. Plate tectonics in the twenty-first century. Sci China Earth Sci, 66: 1–40

    Article  Google Scholar 

  • Zhu R, Zhang S, Wan B, Zhang W, Li Y, Wang H, Luo B, Liu Y, He Z, Jin Z. 2023b. Effects of Neo-Tethyan evolution on the petroleum system of Persian Gulf Superbasin. Pet Explor Dev, 50: 1–13

    Article  Google Scholar 

  • Zhu R, Zhao P, Zhao L. 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Sci China Earth Sci, 65: 1–24

    Article  Google Scholar 

  • Zhu R, Zhao P, Wan B, Sun W. 2023a. Geodynamics of the one-way subduction of the Neo-Tethys Ocean. Chin Sci Bull, 68: 1699–1708

    Article  Google Scholar 

  • Zoback M L, Zoback M. 1980. State of stress in the conterminous United States. J Geophys Res, 85: 6113–6156

    Article  Google Scholar 

Download references

Acknowledgements

The paper benefits from insightful discussion with Yonggang LIU, Ning TAN, Feng SHI, Yang LI, Lin WANG, Hehe JIANG, WenjiaoXIAO, ZhiliangHE, Kuidong ZHAO, Qinglai FENG, Ling CHEN, Haijun SONG, Zhichao LIU, and Shuichang ZHANG. We appreciate Academician Zhengtang GUO for his patient explanation on the knowledge about the Earth’s environmental evolution. We thank the three reviewers’ comments and suggestions from Editor-in-chief Yongfei ZHENG, which made the presentation more accurate. We thank Reuben HANSMAN and Shengchao YAN for the language issue. This work was supported by the National Natural Science Foundation of China (Grant Nos. 92255303 & 41888101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, B., Wu, F. & Zhu, R. The influence of Tethyan evolution on changes of the Earth’s past environment. Sci. China Earth Sci. 66, 2653–2665 (2023). https://doi.org/10.1007/s11430-023-1185-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1185-3

Keywords

Navigation