Skip to main content
Log in

The Relation “Commutator Equals Function” in Banach Algebras

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The relation \(xy-yx=h(y)\), where \(h\) is a holomorphic function, occurs naturally in the definitions of some quantum groups. To attach a rigorous meaning to the right-hand side of this equality, we assume that \(x\) and \(y\) are elements of a Banach algebra (or of an Arens–Michael algebra). We prove that the universal algebra generated by a commutation relation of this kind can be represented explicitly as an analytic Ore extension. An analysis of the structure of the algebra shows that the set of holomorphic functions of \(y\) degenerates, but at each zero of \(h\), some local algebra of power series remains. Moreover, this local algebra depends only on the order of the zero. As an application, we prove a result about closed subalgebras of holomorphically finitely generated algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in what follows, by “algebra” we mean “associative algebra with unit over the field \(\mathbb C\) of complex numbers.”

References

  1. C. Kassel, Quantum Groups (Springer, New York, NY, 1995).

    Book  Google Scholar 

  2. N. Aizawa and H. Sato, “Quantum affine transformation group and covariant differential calculus,” Progr. Theoret. Phys. 91 (6), 1065–1079 (1994).

    Article  MathSciNet  Google Scholar 

  3. V. L. Ostrovskii and Yu. S. Samoilenko, “On pairs of quadratically related operators,” Funct. Anal. Appl. 47 (1), 67–71 (2013).

    Article  MathSciNet  Google Scholar 

  4. Yu. V. Turovskii, “On pairs of operators connected by a quadratic relation,” in Spectral Theory of Operators and Its Applications (Éli, Baku, 1985), Vol. 6, pp. 144–181 [in Russian].

  5. V. S. Shulman, “Invariant subspaces and spectral mapping theorems,” in Functional Analysis and Operator Theory, Banach Center Publ. (Polish Acad. Sci. Inst. Math., Warszawa, 1994), Vol. 30, pp. 313–325.

    MathSciNet  Google Scholar 

  6. A. Yu. Pirkovskii, “Arens–Michael envelopes, homological epimorphisms, and relatively quasi-free algebras,” in Trans. Mosc. Math. Soc. (2008), Vol. 2008, pp. 27–104.

  7. N. Lao and R. Whitley, “Norms of powers of the Volterra operator,” Integr. Equ. Oper. Theory 27 (4), 419–425 (1997).

    Article  MathSciNet  Google Scholar 

  8. D. Kershaw, “Operator Norms of Powers of the Volterra Operator,” J. Integral Equations Appl. 11 (3), 351–36 (1999).

    Article  MathSciNet  Google Scholar 

  9. B. Thorpe, “The norm of powers of the indefinite integral operator on \((0,1)\),” Bull. London. Math. Soc. 30 (5), 543–548 (1998).

    Article  MathSciNet  Google Scholar 

  10. G. Little and J. B. Reade, “Estimates for the norm of the \(n\)th indefinite integral,” Bull. London. Math. Soc. 30 (5), 539–542 (1998).

    Article  MathSciNet  Google Scholar 

  11. A. Yu. Pirkovskii, “Noncommutative analogues of Stein spaces of finite embedding dimension,” in Algebraic Methods in Functional Analysis, Oper. Theory Adv. Appl. (Birkhäuser Verlag, Bassel, 2014), Vol. 233, pp. 135–153.

    MathSciNet  MATH  Google Scholar 

  12. A. Yu. Pirkovskii, “Holomorphically finitely generated algebras,” J. Noncommut. Geom. 9 (1), 215–264 (2015).

    Article  MathSciNet  Google Scholar 

  13. A. Mallios, Topological Algebras. Selected Topics, in North-Holland Math. Stud. (North-Holland, Amsterdam, 1986), Vol. 124.

    Book  Google Scholar 

  14. W. Rudin, Real and Complex Analysis (McGraw-Hill Book, New York, 1987).

    MATH  Google Scholar 

  15. A. Ya. Helemskii, Banach and Locally Convex Algebras (Oxford University Press, Oxford, 1993).

    Google Scholar 

  16. J. L. Taylor, “A general framework for a multi-operator functional calculus,” Adv. Math. 9, 183–252 (1972).

    Article  MathSciNet  Google Scholar 

  17. J. L. Taylor, “Functions of several noncommuting variables,” Bull. Amer. Math. Soc. 79, 1–34 (1973).

    Article  MathSciNet  Google Scholar 

  18. A. Grothendieck, “Sur les espaces \((\mathscr F)\) et \((\mathscr{DF})\),” Summa Brasil. Math. 3, 57–123 (1954).

    MathSciNet  Google Scholar 

  19. P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, in North-Holland Math. Stud. (North-Holland, Amsterdam, 1987), Vol. 131.

    Book  Google Scholar 

  20. H. H. Schaefer, Topological Vector Spaces (Springer, New York–Berlin, 1971).

    Book  Google Scholar 

  21. R. Meise and D. Vogt, Introduction to Functional Analysis, in Oxf. Grad. Texts Math. (The Clarendon Press, New York, 1997), Vol. 2.

    MATH  Google Scholar 

  22. J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, in London Math. Soc. Monogr. (N. S.) (The Clarendon Press, New York, 1996), Vol. 10.

    MATH  Google Scholar 

  23. A. Yu. Pirkovskii, “Biprojective topological algebras of homological bidimension \(1\),” J. Math. Sci. (New York) 111 (2), 3476–3495 (2002).

    Article  MathSciNet  Google Scholar 

  24. A. Pietsch, “Zur Theorie der topologischen Tensorprodukte,” Math. Nachr. 25, 19–30 (1963).

    Article  MathSciNet  Google Scholar 

  25. O. Yu. Aristov (2018); “Arens–Michael envelopes of nilpotent lie algebras, functions of exponential type, and homological epimorphisms,” Tr. Mosk. Mat. Obshch. 81 (1) (2020); arXiv: 1810.13213, 2018.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Aristov.

Additional information

Translated from Matematicheskie Zametki, 2021, Vol. 109, pp. 323-337 https://doi.org/10.4213/mzm12746.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, O.Y. The Relation “Commutator Equals Function” in Banach Algebras. Math Notes 109, 323–334 (2021). https://doi.org/10.1134/S0001434621030019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621030019

Keywords

Navigation