Skip to main content
Log in

An embedding of the Bannai–Ito algebra in \(\mathscr {U}(\mathfrak {osp}(1,2))\) and \(-1\) polynomials

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

An embedding of the Bannai–Ito algebra in the universal enveloping algebra of \(\mathfrak {osp}(1,2)\) is provided. A connection with the characterization of the little \(-1\) Jacobi polynomials is found in the holomorphic realization of \(\mathfrak {osp}(1,2)\). An integral expression for the Bannai–Ito polynomials is derived as a corollary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, E., Ito, T.: Algebraic combinatorics I: association schemes. Benjamin & Cummings, San Francisco (1984)

    MATH  Google Scholar 

  2. Baseilhac, P., Gainutdinov, A.M., Vu, T.T.: Cyclic tridiagonal pairs, higher order Onsager algebras and orthogonal polynomials. Linear Algebra Appl. 522, 71–110 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  3. De Bie, H., Genest, V.X., Vinet, L.: A Dirac–Dunkl equation on \(S^2\) and the Bannai–Ito algebra. Commun. Math. Phys. 344, 447–464 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Genest, V.X., Ismail, M., Vinet, L., Zhedanov, A.: Tridiagonalization of the hypergeometric operator and the Racah–Wilson algebra. Proc. Am. Math. Soc. 144, 4441–4454 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Genest, V.X., Vinet, L., Zhedanov, A.: Bispectrality of the complementary Bannai–Ito polynomials. SIGMA Symmetry Integr. Geom. Methods Appl. 9, 18–37 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Genest, V.X., Vinet, L., Zhedanov, A.: The Bannai–Ito polynomials as Racah coefficients of the \(sl_{-1}(2)\) algebra. Proc. Am. Math. Soc. 142, 1545–1560 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Genest, V.X., Vinet, L., Zhedanov, A.: The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere. J. Phys. A: Math. Theor. 47, 205202 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Genest, V.X., Vinet, L., Zhedanov, A.: The equitable racah algebra from three \(\mathfrak{su}(1,1)\) algebras. J. Phys. A: Math. Theor. 47, 025203 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Genest, V.X., Vinet, L., Zhedanov, A.: A Laplace–Dunkl equation on \(S^2\) and the Bannai–Ito algebra. Commun. Math. Phys. 336, 243–259 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Genest, V.X., Vinet, L., Zhedanov, A.: The equitable presentation of \(\mathfrak{osp}_{q}(1|2)\) and a \(q\)-analog of the Bannai–Ito algebra. Lett. Math. Phys. 105, 1725–1734 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Genest, V.X., Vinet, L., Zhedanov, A.: The non-symmetric Wilson polynomials are the Bannai–Ito polynomials. Proc. Am. Math. Soc. 144, 5217–5226 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Granovskii, Y.I., Zhedanov, A.: Linear covariance algebra for \(SL_q(2)\). J. Phys. A: Math. Gen. 26, L357 (1993)

    Article  ADS  MATH  Google Scholar 

  13. Huang, H.: Finite-dimensional irreducible modules of the universal Askey–Wilson algebra. Commun. Math. Phys. 340, 959–964 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Huang, H.: An embedding of the universal Askey-Wilson algebra into \(\fancyscript {U}_q(sl(2)) \otimes \fancyscript {U} _q(sl(2)) \otimes \fancyscript {U}_q(sl(2))\). Nucl. Phys. B 922, 401–434 (2017)

    Article  ADS  Google Scholar 

  15. Huang, H.: Center of the universal Askey–Wilson algebra at roots of unity. Nucl. Phys. B 909, 260–296 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Ismail, M., Koelink, E.: Spectral properties of operators using tridiagonalisation. Anal. Appl. 10, 327 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koornwinder, T.H.: Special orthogonal polynomial systems mapped onto each other by the Fourier–Jacobi transform. In: Lecture Notes in Mathematics. Springer, Berlin, pp 174–183 (1984)

  18. Terwilliger, P.: Leonard pairs and dual polynomial sequences. Preprint (1987)

  19. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra Appl. 330, 149–203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Terwilliger, P., Vidunas, R.: Leonard pairs and the Askey–Wilson relations. J. Algebra Appl. 3, 411–426 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vidunas, R.: Normalized Leonard pairs and Askey–Wilson relations. Linear Algebra Appl. 422, 39–57 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tsujimoto, S., Vinet, L., Zhedanov, A.: Dunkl shift operators and Bannai–Ito polynomials. Adv. Math. 229, 2123–2158 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vinet, L., Zhedanov, A.: A ‘missing’ family of classical orthogonal polynomials. J. Phys. A: Math. Theor. 44, 085201 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Zhedanov, A.S.: “Hidden symmetry” of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

PB, VXG and AZ acknowledge the hospitality of the CRM and LV that of the Université de Tours where parts of the reported research have been realized. PB is supported by C.N.R.S. VXG holds a postdoctoral fellowship from the Natural Science and Engineering Research Council (NSERC) of Canada. LV is grateful to NSERC for support through a discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Vinet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baseilhac, P., Genest, V.X., Vinet, L. et al. An embedding of the Bannai–Ito algebra in \(\mathscr {U}(\mathfrak {osp}(1,2))\) and \(-1\) polynomials. Lett Math Phys 108, 1623–1634 (2018). https://doi.org/10.1007/s11005-017-1041-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1041-0

Keywords

Mathematics Subject Classification

Navigation