Skip to main content
Log in

On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Optimal (minimal) Banach spaces containing given cones of monotone or quasiconcave functions on the semiaxis from weighted Lebesgue spaces are described. Exact formulas for the norm of the optimal space are presented. All cases of the summation parameter are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Gol’dman and P. P. Zabreiko, “Optimal reconstruction of a Banach function space from a cone of nonnegative functions,” in Trudy Mat. Inst. Steklov, Vol. 284: Function Spaces and Related Questions of Analysis (MAIK, Moscow, 2014), pp. 142–156 [Proc. Steklov Inst.Math. 284, 133–147 (2014)].

    Google Scholar 

  2. M. L. Gol’dman and R. Kerman, “On optimal embedding of Calderón spaces and generalized Besov spaces,” in Trudy Mat. Inst. Steklov, Vol. 243: Function Spaces, Approximations, and Differential Equations, Collected papers dedicated to Oleg Vladimirovich Besov on his 70th birthday (Nauka, Moscow, 2003), pp. 161–193 [Proc. Steklov Inst. Math. 243, 154–184 (2003)].

    Google Scholar 

  3. M. L. Gol’dman, “Optimal embeddings of generalized Bessel and Riesz potentials,” in Trudy Mat. Inst. Steklov, Vol. 269: Theory of Functions and Differential equations (MAIK, Moscow, 2010), pp. 91–111 [Proc. Steklov Inst.Math. 269, 85–105 (2010)].

    Google Scholar 

  4. M. L. Gol’dman and D. D. Haroske, “Estimates for continuity envelopes and approximation numbers of Bessel potentials,” J. Approx. Theory 172, 58–85 (2013).

    Article  MathSciNet  Google Scholar 

  5. D. Haroske, Envelopes and Sharp Embeddings of Function Spaces, in Chapman Hall/CRC Res. Notes Math. (Chapman & Hall/CRC, Boca Raton, FL, 2007), Vol. 437.

  6. A. Gogatishvili, B. Opic, and J. S. Neves, “Optimality of embeddings of Bessel-potential-type space into Lorentz–Karamata spaces,” Proc. Roy. Soc. Edinburgh Sec. A 134 (6), 1127–1147 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Gogatishvili, J. S. Neves, and B. Opic, “Optimal embeddings and compact embeddings of Besselpotential- type space,” Math. Z. 262 (No. 3), 645–682 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. D. Stepanov, “Weighted inequalities for the class of Volterra convolution operators,” J. London Math. Soc. (2) 45 (2), 232–242 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. L.Gol’dman, H. P. Heinig, and V.D. Stepanov, “On the principle of duality in Lorentz spaces,” Canad. J. Math. 48 (5), 959–979 (1996).

    Article  MathSciNet  Google Scholar 

  10. A. Gogatishvili and L. Pick, “Discretization and antidiscretization of rearrangement-invariant norms,” Publ. Mat. 47 (2), 311–358 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Gogatishvili and L. Pick, “Embeddings and duality theorems for weak classical Lorentz spaces,” Canad. Math. Bull. 49 (1), 82–95 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Gogatishvili and R. Kerman, “The rearrangement-invariant space Gp,f,” Positivity 18 (2), 319–345 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces,” Studia Math. 96 (2), 145–158 (1990).

    MATH  MathSciNet  Google Scholar 

  14. V. D. Stepanov, “The weighted Hardy’s inequality for nonincreasing functions,” Trans.Amer.Math. Soc. 338 (1), 173–186 (1993).

    MATH  MathSciNet  Google Scholar 

  15. M. Carro, L. Pick, J. Soria, and V. D. Stepanov, “On embeddings between classical Lorentz spaces,” Math. Inequal. Appl. 4 (3), 397–428 (2001).

    MATH  MathSciNet  Google Scholar 

  16. M. L. Gol’dman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions,” Anal.Math. 37 (2), 83–102 (2011).

    Article  MathSciNet  Google Scholar 

  17. A. I. Tyulenev, “The problem of traces for Sobolev spaces with Muckenhoupt-type weights,” Mat. Zametki 94 (5), 720–732 (2013) [Math. Notes 94 (5–6), 668–680 (2013)].

    Article  MathSciNet  Google Scholar 

  18. R. G. Nasibullin, “Generalizations of Hardy-type inequalities in the form of Dubinskii,” Mat. Zametki 95 (1), 109–122 (2014) [Math. Notes 95 (1–2), 98–109 (2014)].

    MathSciNet  Google Scholar 

  19. O. V. Besov, “Embedding of Sobolev spaces and properties of the domain,” Mat. Zametki 96 (3), 343–349 (2014) [Math. Notes 96 (3–4), 326–331 (2014)].

    Article  MathSciNet  Google Scholar 

  20. G. Sinnamon, “Embeddings of concave functions and duals of Lorentz spaces,” Publ.Mat. 46 (2), 489–515 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  21. L.-E. Persson, O. V. Popova, and V. D. Stepanov, “Weighted Hardy-type inequalities on the cone of quasi-concave functions,” Math. Inequal. Appl. 17 (3), 879–898 (2014).

    MATH  MathSciNet  Google Scholar 

  22. D. V. Prokhorov and V. D. Stepanov, “Estimates for a class of sublinear integral operators,” Dokl. Ross. Akad. Nauk 456 (6), 645–649 (2014) [Dokl.Math. 89 (3), 372–377 (2014)].

    MathSciNet  Google Scholar 

  23. S. V. Astashkin, “Approximation of subspaces of symmetric spaces generated by independent functions,” Mat. Zametki 96 (5), 643–652 (2014) [Math. Notes 96 (5–6), 625–633 (2014)].

    Article  MathSciNet  Google Scholar 

  24. V. D. Stepanov and G. Shambilova, “Weight boundedness of a class of quasilinear operators on the cone of monotone functions,” Dokl. Ross. Akad. Nauk 458 (3), 268–271 (2014) [Dokl. Math. 90 (2), 569–572 (2014)].

    Google Scholar 

  25. V. G. Krotov and A. I. Porabkovich, “Estimates of Lp-oscillations of functions for p > 0,” Mat. Zametki 97 (3), 407–420 (2015) [Math. Notes 97 (3–4), 384–395 (2015)].

    Article  MathSciNet  Google Scholar 

  26. L.-E. Persson, G. E. Shambilova, and V. D. Stepanov, “Hardy-type inequalities on the weight cones of quasi-concave functions,” Banach J.Math. Anal. 9 (2), 21–34 (2015).

    Article  MathSciNet  Google Scholar 

  27. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  28. G. Sinnamon and V. D. Stepanov, “The weighted Hardy inequality: new proof and the case p = 1,” J. London Math. Soc. (2) 54 (1), 89–101 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions,” Uspekhi Mat. Nauk 68 (4), 3–68 (2013) [Russian Math. Surveys 68 (4), 597–664 (2013)].

    Article  MathSciNet  Google Scholar 

  30. G. Sinnamon, “Transferring monotonicity in weighted norm inequalities,” Collect. Math. 54 (2), 181–216 (2003).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Stepanov.

Additional information

Original Russian Text © V. D. Stepanov, 2015, published in Matematicheskie Zametki, 2015, Vol. 98, No. 6, pp. 907–922.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, V.D. On optimal Banach spaces containing a weight cone of monotone or quasiconcave functions. Math Notes 98, 957–970 (2015). https://doi.org/10.1134/S0001434615110280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434615110280

Keywords

Navigation