Skip to main content
Log in

The rearrangement-invariant space \(\Gamma _{p,\phi }\)

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Fix \(b\in \mathbb R _+\) and \(p\in (1,\infty )\). Let \(\phi \) be a positive measurable function on \(I_b:=(0,b)\). Define the Lorentz Gamma norm, \(\rho _{p,\phi }\), at the measurable function \(f:\mathbb R _+\rightarrow \mathbb R _+\) by \(\rho _{{}_{p,\phi }}(f):=\left[ \int _0^bf^{**}(t)^p\phi (t)\,dt\right] ^{\frac{1}{p}}\), in which \(f^{**}(t):=t^{-1}\int _0^tf^{*}(s)\,ds\), where \(f^*(t):=\mu _f^{-1}(t)\), with \(\mu _f(s):=|\{ x\in I_b: |f(x)|>s\}|\). Our aim in this paper is to study the rearrangement-invariant space determined by \(\rho _{{}_{p,\phi }}\). In particular, we determine its Köthe dual and its Boyd indices. Using the latter a sufficient condition is given for a Caldéron–Zygmund operator to map such a space into itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The special case \(\phi (t)=t^{\frac{p}{q}-1}\), \(1<p,q<\infty \), was treated earlier in [7].

References

  1. Andersen, K.F.: Weighted inequalities for the Stieltjes transformation and Hilbert’s double series. Proc. R. Soc. Edinb. Sect. A 86(1–2), 75–84 (1980)

    Article  MATH  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, New York (1976)

  3. Carro, M., Pick, L., Soria, J., Stepanov, V.D.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4(3), 397–428 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Edmunds, D.E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170(2), 307–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gogatishvili, A., Pick, L.: Discretization and antidiscretization of rearrangement-invariant norms. Publ. Mat. 47(2), 311–358 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gol’dman, M.L., Heinig, H.P., Stepanov, V.D.: On the principle of duality in Lorentz spaces. Can. J. Math. 48, 959–979 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hunt, R.A.: On \(L(p, q)\) spaces. Enseignement Math. 12, 249–276 (1966)

    MATH  MathSciNet  Google Scholar 

  8. Kaminska, A., Maligranda, L.: On Lorentz spaces \(\Gamma _{p, w}\). Isr. J. Math. 140, 285–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kerman, R.: A sharp estimate for the least concave majorant and the range of Caldéron–Zygmund operators (in preparation)

  10. Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Google Scholar 

  11. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96(2), 145–158 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Sinnamon, G.: A note on the Stieltjes transformation. Proc. R. Soc. Edinb. Sect. A 110(1–2), 73–78 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sinnamon, G.: Embeddings of concave functions and duals of Lorentz spaces. Publ. Mat. 46(2), 489–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the referee for alerting us to the paper [8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Kerman.

Additional information

The research of the first author was partially supported by the grant no. 201/08/0383 and 13-14743S of the Grant Agency of the Czech Republic and RVO: 67985840.

The research of the second author was supported in part by NSERC grant A4021.

Appendix

Appendix

It is our purpose here to give an heuristic argument to motivate the choice of \(\psi \) in (4.1) when \(\phi \) is a non-trivial weight on \(I_b\) satisfying \(\int _{I_b}\phi =\infty \).

Now,

$$\begin{aligned} \rho _{{}_{p,\phi }}^\prime (g)=\sup _{f\in \mathfrak M _+(I_b)} \frac{\int _0^b f^*(t)g^*(t)\,dt}{\left[ \int _0^bf^{**}(t)^p\phi (t)\,dt\right] ^{\frac{1}{p}}}=:I(g), \quad g\in \mathfrak M _+(I_b). \end{aligned}$$

It suffices to consider \(f(t)=\int _t^b h(s)\frac{ds}{s}\) for some \(h\in \mathfrak M _+(I_b)\), \(h\not = 0\) a.e.. Since, in that case,

$$\begin{aligned} \int _0^b f^*(t)g^*(t)=\int _0^b\int _t^bh(s)\frac{ds}{s}g^*(t)\,dt=\int _0^b h(t)g^{**}(t)\,dt \end{aligned}$$

and

$$\begin{aligned} f^{**}(t)=t^{-1}\int _0^t\int _s^bh(y)\frac{dy}{y}\,ds=t^{-1}\int _0^t h(s)\,ds+\int _t^bh(s)\frac{ds}{s}\approx (Sh)(t), \quad t\in I_b, \end{aligned}$$

we have

$$\begin{aligned} I(g)=\sup _{h\in \mathfrak M _+(I_b)} \frac{\int _0^b h(t)g^{**}(t)\,dt}{\left[ \int _0^b (Sh)(t)^p\phi (t)\,dt\right] ^{\frac{1}{p}}}. \end{aligned}$$

If \(\overline{\phi }\) is such that

$$\begin{aligned} \int _0^b (Sh)^p\phi \le C\int _0^b h^p\overline{\phi }, \quad h\in \mathfrak M (I_b), \end{aligned}$$
(7.1)

then,

$$\begin{aligned} I(g)\ge C^{-1}\sup _{h\in \mathfrak M _+(I_b)}\frac{\int _0^bh(t)g^{**}(t)\,dt}{\left[ \int _0^bh(t)^p\overline{\phi }(t)\,dt\right] ^{\frac{1}{p}}}. \end{aligned}$$

This suggests we take \(\psi (t)=\overline{\phi }(t)^{1-p^\prime }\) where \(\overline{\phi }\) is, in some sense the smallest weight such that (7.1) holds. Andersen’s condition (3.5) for (7.1) leads us to solve for \( \overline{\phi }(t)^{1-p^\prime }\) in the equation

$$\begin{aligned} \left[ \int _0^b \frac{\phi (s)}{(s+t)^{p}}\,ds\right] ^{\frac{1}{p}} \left[ \int _0^b \left( \frac{t}{s+t}\right) ^{p^\prime }\overline{\phi }(s)^{1-p^\prime }\,ds\right] ^{\frac{1}{p^\prime }}=1, \end{aligned}$$
(7.2)

or, what is equivalent,

$$\begin{aligned} \int _0^t \overline{\phi }(s)^{1-p^\prime }\,ds+t^{p^\prime }\int _t^b \overline{\phi }(s)^{1-p^\prime }s^{-p^\prime }\,ds =\left[ t^{-p}\int _0^t \phi (s)\,ds+ \int _t^b \phi (s)s^{-p}\,ds\right] ^{1-p^\prime }. \end{aligned}$$

Differentiation with respect to \(t\) yields

$$\begin{aligned} t^{p^\prime -1}\int _t^b \overline{\phi }(s)^{1-p^\prime }s^{-p^\prime }\,ds = \int _0^t\phi (s)\,ds \left[ t^{-p}\int _0^t \phi (s)\,ds+ \int _t^b \phi (s)s^{-p}\,ds\right] ^{-p^\prime }. \end{aligned}$$

Differentiating again with respect to \(t\) we get

$$\begin{aligned} \overline{\phi }(t)^{1-p^\prime }&= \frac{pp^\prime t^{pp^\prime -1}\int _0^t \phi (s)\,ds \int _t^b \phi (s)s^{-p}\,ds}{\left[ \int _0^t \phi (s)\,ds+t^{p} \int _t^b \phi (s)s^{-p}\,ds\right] ^{p^\prime +1}} \\&-\frac{t^{p^\prime }\phi (t)}{\left[ \int _0^t \phi (s)\,ds+t^{p} \int _t^b \phi (s)s^{-p}\,ds\right] ^{p^\prime }} \end{aligned}$$

It seems we essentially have

$$\begin{aligned} \overline{\phi }(t)^{1-p^\prime }=\frac{(P\phi )(t)(Q_{p}\phi )(t)}{\left[ (P\phi )(t)+(Q_{p}\phi )(t)\right] ^{p^\prime +1}}. \end{aligned}$$
(7.3)

The weight \(\widehat{\phi }(t)\) given by

$$\begin{aligned} \widehat{\phi }^{1-p^\prime }(t)= \frac{t^{p^\prime }\phi (t)}{\left[ \int _0^t \phi (s)\,ds+t^{p} \int _t^b \phi (s)s^{-p}\,ds\right] ^{p^\prime }} = \frac{\phi (t)}{\left[ (P\phi )(t)+(Q_{p}\phi )(t)\right] ^{p^\prime }} \end{aligned}$$

is readily shown to satisfy Andersen’s condition (7.2) and, hence, so will

$$\begin{aligned} \frac{(P\phi )(t)(Q_{p}\phi )(t)}{\left[ (P\phi )(t)+(Q_{p}\phi )(t)\right] ^{p^\prime +1}}= \overline{\phi }(t)^{1-p^\prime }+\widehat{\phi }(t)^{1-p^\prime }. \end{aligned}$$

Now, \(\overline{\phi }(t)\) will be better then \(\widehat{\phi }(t)\) in (7.1) if

$$\begin{aligned} \int _0^b g^{**}(t)^{p^\prime }\widehat{\phi }(t)^{1-p^\prime }dt \le C \int _0^b g^{**}(t)^{p^\prime } \overline{\phi }(t)^{1-p^\prime }dt. \end{aligned}$$

One readily infers from Theorem 5.1 that this will be so if and only if

$$\begin{aligned} \int _0^t s^{p^\prime -1}\int _s^b \widehat{\phi }(y)^{1-p^\prime }y^{-p^\prime }\,dy\,ds\le C \int _0^t s^{p^\prime -1}\int _s^b \overline{\phi }(y)^{1-p^\prime }y^{-p^\prime }\,dy\,ds. \end{aligned}$$

But,

$$\begin{aligned} \int _s^b \overline{\phi }(y)^{1-p^\prime }y^{-p^\prime }\,dy&\approx \int _s^b y^{-p^\prime } \frac{(P\phi )(y)(Q_{p}\phi )(y)}{\left[ (P\phi )(y)+(Q_{p}\phi )(y)\right] ^{p^\prime +1}}\,dy\\&= \int _s^b \frac{y^{p-1}\int _0^y \phi (z)\,dz \int _y^b \phi (z)z^{-p}\,dz}{\left[ \int _0^y \phi (z)\,dz+y^{p} \int _y^b \phi (z)z^{-p}\,dz\right] ^{p^\prime +1}}\,dy\\&= -\frac{1}{p^\prime }\int _s^b \int _0^y \phi (z)\,dz \frac{d}{dz}\left[ \int _0^y \phi (z)\,dz\!+\!y^{p} \int _y^b\phi (z) z^{-p}\,dz\right] ^{-p^\prime }dy\\&= \left. -\frac{1}{p^\prime } \int _0^y \phi (z)\,dz \left[ \int _0^y \phi (z)\,dz+y^{p} \int _y^b\phi (z) z^{-p}\,dz\right] ^{-p^\prime }\right| _s^b\\&+\frac{1}{p^\prime } \int _s^b \phi (y)\left[ \int _0^y \phi (z)\,dz+y^{p} \int _y^b \phi (z)z^{-p}\,dz\right] ^{-p^\prime }\,dy\\&\ge \frac{1}{p^\prime }\int _s^b \widehat{\phi }(y)^{1-p^\prime }y^{-p^\prime }\,dy, \end{aligned}$$

if \(\int _0^b\phi (z)\,dz=\infty \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogatishvili, A., Kerman, R. The rearrangement-invariant space \(\Gamma _{p,\phi }\) . Positivity 18, 319–345 (2014). https://doi.org/10.1007/s11117-013-0246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-013-0246-4

Keywords

Mathematics Subject Classification (2000)

Navigation