Skip to main content
Log in

Estimating Agulhas Leakage by Means of Satellite Altimetry and Argo Data

  • USING SPACE-BASED INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The study of mesoscale eddies provides an understanding of entire systems of interconnected oceanic characteristics. Mesoscale eddies have their own dynamics, which are dominated by nonlinear effects. Unlike waves, they can transfer heat, mass, kinetic energy, and biochemical characteristics from the region of their formation over vast distances, influencing climate fluctuations. “Agulhas leakage” refers to the waters exported from the Indian Ocean to the Atlantic Ocean by the Agulhas system of currents. These waters consist mainly of upper and intermediate waters of Indo-Oceanic origin. Mesoscale eddies formed by the Agulhas Current are the dominant structures that transport the waters of the Indian Ocean to the Atlantic. This work studies the Agulhas leakage via a comprehensive analysis of altimetry maps and Argo float data. Argo floats captured by the flow allow the vertical structure of Agulhas leakage eddies to be studied. It is found that the mesoscale eddies of the Agulhas leakage travel thousands of kilometers across the Atlantic while retaining their structure. It is shown that the mean Agulhas leakage transport by one mesoscale eddy is 8.5 Sv. The transport of heat and salt by an individual Agulhas leakage eddy is 2.25 × 109 W and 5.36 × 105 kg s−1, respectively. The heat and salt anomalies inside the eddy are 2.03 × 1015 J and 4.83 × 1011 kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Beismann, J.-O., Kase, R.H., and Lutjeharms, J.R.E., On the influence of submarine ridges on translation and stability of Agulhas rings, J. Geophys. Res., 1999, vol. 104, no. C4, pp. 7897–7906. https://doi.org/10.1029/1998JC900127

    Article  Google Scholar 

  2. Belonenko, T.V. and Kubryakov, A.A., Temporal variability of the phase velocity of Rossby waves in the North Pacific, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 3, pp. 9–18.

  3. Belonenko, T.V., Zakharchuk, E.A., and Fuks, V.R., Waves or vortices, Vestn. S.-Peterb. Univ., Ser. 7: Geol., Geogr., 1999, no. 3, pp. 37–44.

  4. Belonenko, T.V., Zakharchuk, E.A., and Fuks, V.R., Gradientno–vikhrevye volny v okeane (Gradient–Vortex Waves in the Ocean), St. Petersburg, SPbGU, 2004.

  5. Belonenko, T.V., Kubryakov, A.A., and Stanichny, S.V., Spectral characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 920–928. https://doi.org/10.1134/S0001433816090073

    Article  Google Scholar 

  6. Biastoch, A., Boning, C.W., and Lutjeharms, J.R.E., Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation, Nature, 2008, vol. 456, pp. 489–492. https://doi.org/10.1038/nature07426

    Article  Google Scholar 

  7. Bryden, H.L., Beal, L.M., and Duncan, L.M., Structure and transport of the Agulhas Current and its temporal variability, J. Oceanogr., 2005, vol. 61, pp. 479–492. https://doi.org/10.1007/s10872-005-0057-8

    Article  Google Scholar 

  8. Byrne, D.A., Gordon, A.L., and Haxby, W.F., Agulhas eddies: A synoptic view using Geosat ERM data, J. Phys. Oceanogr., 1995, vol. 25, pp. 902–917.

    Article  Google Scholar 

  9. Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., and Pizarro, O., Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats, J. Geophys. Res., 2011, C11025. https://doi.org/10.1029/2011JC007134

  10. Chelton, D.B., Schlax, M.G., Samelson, R.M., and de Szoeke, R.A., Global observations of large oceanic eddies, Geophys. Res. Lett., 2007, vol. 34, L15606. https://doi.org/10.1029/2007GL030812

    Article  Google Scholar 

  11. Chelton, D.B., Schlax, M.G., and Samelson, R.M., Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 2011, vol. 91, pp. 167–216. https://doi.org/10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  12. Doglioli, A.M., Blanke, B., Speich, S., and Lapeyre, G., Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies, J. Geophys. Res., 2007, vol. 112, C05043. https://doi.org/10.1029/2006JC003952

    Article  Google Scholar 

  13. Donners, J., Drijfhout, S.S., and Coward, A.C., Impact of cooling on the water mass exchange of Agulhas rings in a high resolution ocean model, Geophys. Res. Lett., 2004, vol. 31, no. 16, L16312. https://doi.org/10.1029/2004GL020644

    Article  Google Scholar 

  14. Garzoli, S.L. and Goni, G.J., Combining altimeter observations and oceanographic data for ocean circulation and climate studies, Elsevier Oceanogr. Ser., 2000, vol. 63, pp. 79–95. https://doi.org/10.1016/S0422-9894(00)80006-9

    Article  Google Scholar 

  15. Giulivi, C.F. and Gordon, A.L., Isopycnal displacements within the Cape Basin thermocline as revealed by the hydrographic data archive, Deep-Sea Res., Part I, 2006, vol. 53, pp. 1285–1300. https://doi.org/10.1016/j.dsr.2006.05.011

    Article  Google Scholar 

  16. Gnevyshev, V.G., Frolova, A.V., Kubryakov, A.A., Sobko, Yu.V., and Belonenko, T.V., Interaction of Rossby waves with a jet stream: Basic equations and their verification for the Antarctic circumpolar current, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 5, pp. 412–422.

    Article  Google Scholar 

  17. Gordon, A.L. and Haxby, W.F., Agulhas eddies invade the south Atlantic: Evidence from Geosat altimeter and shipboard conductivity–temperature–depth survey, J. Geophys. Res.: Oceans, 1990, vol. 5, no. C3, pp. 3117–3125. https://doi.org/10.1029/JC095iC03p03117

    Article  Google Scholar 

  18. Gordon, A.L., Lutjeharms, J.R.E., and Grundlingh, M.L., Stratification and circulation at the Agulhas retroflection, Deep-Sea Res., Part I, 1987, vol. 34, pp. 565–599. https://doi.org/10.1016/0198-0149(87)90006-9

    Article  Google Scholar 

  19. Gordon, A.L., Weiss, R.F., Smethie, W.M., and Warner, M.J., Thermocline and intermediate water communication between the South Atlantic and Indian Ocean, J. Geophys. Res., 1992, vol. 97, no. C5, pp. 7223–7240. https://doi.org/10.1029/92JC00485

    Article  Google Scholar 

  20. Le Blond, P. and Mysak, L., Waves in the Ocean, Elsevier, 1977; Moscow: Mir, 1981.

  21. Lutjeharms, J.R.E. and van Ballegooyen, R.C., The retroflection of the Agulhas Current, J. Phys. Oceanogr., 1988, pp. 1570–1583.

  22. Lutjeharms, J.R.E. and Valentine, H.R., Evidence for persistent Agulhas rings southwest of Cape Town, S. Afr. J. Sci., 1988, pp. 781–783.

  23. Malysheva, A.A., Koldunov, A.V., Belonenko, T.V., and Sandalyuk, N.V., Agulhas leakage eddies based on altimetry data, Uch. Zap. RGGMU, 2018, no. 52, pp. 154–170.

  24. Marcos, M., Pascual, A., and Pujol, I., Improved satellite altimeter mapped sea level anomalies in the Mediterranean Sea: A comparison with tide gauges, Adv. Space Res., no. 4, pp. 596–604. https://doi.org/10.1016/j.asr.2015.04.027

  25. Munk, W., Achievements in physical oceanography, in 50 Years of Years of Ocean Discovery: National Science Foundation 1950–2000, Washington, DC: National Academies Press, 2000, pp. 44–50.

    Google Scholar 

  26. Nezlin, M.V., Rossby solitons, Phys.-Usp., 1986, vol. 29, no. 1, pp. 807–842.

    Google Scholar 

  27. Pedlosky, J., Geophysical Fluid Dynamics, New York: Springer, 1979; Moscow: Mir, 1984.

  28. Reason, C.J.C., Lutjeharms, J.R.E., Hermes, J., Biastoch, A., and Roman, R.E., Inter-ocean fluxes south of Africa in an eddy-permitting model, Deep-Sea Res., Part II, 2003, vol. 50, pp. 281–298.

    Article  Google Scholar 

  29. Richardson, P.L., Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters, Deep-Sea Res., 2007, vol. 54, no. 8, pp. 1361–1389.

    Article  Google Scholar 

  30. Sandalyuk, N.V. and Belonenko, T.V., Mesoscale vortex dynamics in the Agulhas Current from satellite altimetry data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2018, vol. 15, no. 5, pp. 179–190. https://doi.org/10.21046/2070-7401-2018-15-5-179-190

    Article  Google Scholar 

  31. Schmitz, W.J., On the interbasin-scale thermohaline circulation, Rev. Geophys., 1995, vol. 33, pp. 151–173. https://doi.org/10.1029/95RG00879

    Article  Google Scholar 

  32. Schouten, M.W., De Ruijter, W.P.M., Van Leeuwen, P.J., and Lutjeharms, J.R.E., Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean, J. Geophys. Res., 2000, vol. 105, no. C9, pp. 21913–21925. https://doi.org/10.1029/1999JC000046

    Article  Google Scholar 

  33. van Sebille, E. and van Leeuwen, P.J., Fast northward energy transfer in the Atlantic due to Agulhas rings, J. Phys. Oceanogr., 2007, vol. 37, pp. 2305–2315. https://doi.org/10.1175/JPO3108.1

    Article  Google Scholar 

  34. van Sebille, E., van Leeuwen, E.P.J., Biastoch, A., Barron, C.N., and de Ruijter, W.P.M., Lagrangian validation of numerical drifter trajectories using drifting buoys: Application to the Agulhas system, Ocean Modell., 2009, vol. 29, no. 4, pp. 269–276. https://doi.org/10.1016/j.ocemod.2009.05.005

    Article  Google Scholar 

  35. Weijer, W.E.V., Sebille impact of Agulhas leakage on the Atlantic overturning circulation in the CCSM4, J. Clim., 2014, vol. 27, pp. 101–110. https://doi.org/10.1175/JCLI-D-12-00714.1

    Article  Google Scholar 

  36. Williams, S., Petersen, M., Bremer, P.-T., Hecht, M., Pascucci, V., Ahrens, J., Hlawitschka, M., and Hamann, B., Adaptive extraction and quantification of geophysical vortices, IEEE Trans. Visualization Comput. Graphics, 2011, vol. 17, no. 12, pp. 2088–2095. https://doi.org/10.1109/TVCG.2011.162

    Article  Google Scholar 

  37. Yari, S., Kovačević, V., Cardin, V., Gačić, M., and Bryden, H.L., Direct estimate of water, heat, and salt transport through the Strait of Otranto, J. Geophys. Res., 2012, vol. 117, C09009. https://doi.org/10.1029/2012JC007936

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-05-00066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Malysheva.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malysheva, A.A., Kubryakov, A.A., Koldunov, A.V. et al. Estimating Agulhas Leakage by Means of Satellite Altimetry and Argo Data. Izv. Atmos. Ocean. Phys. 56, 1581–1589 (2020). https://doi.org/10.1134/S0001433820120476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820120476

Keywords:

Navigation