Skip to main content
Log in

Study of the Ocean Boundary Layer Convection under Inhomogeneous Ice with the Help of the Large-Eddy Simulation Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Upper ocean convection under narrow ice leads is considered and simulated. The effects associated with the localization of the buoyancy source and with the influence of the Coriolis force are discovered. An explanation is proposed for a mechanism that forms a stably salt-stratified isothermal layer during cold seasons at high latitudes. Observational data are qualitatively consistent with the simulation results. The existing parameterizations of under-ice convection in modern climate models are discussed and their possible defects are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Rampal, J. Weiss, and D. Marsan, “Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007,” J. Geophys. Res. 114, C05013 (2009). https://doi.org/10.1029/2008JC005066

    Article  Google Scholar 

  2. J. H. Morison, M. G. McPhee, T. B. Curtin, and C. A. Paulson, “The oceanography of winter leads,” J. Geophys. Res. 97 (C7), 11199–11218 (1992).

    Article  Google Scholar 

  3. S. Marcq and J. Weiss, “Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere,” The Cryosphere 6, 143–156 (2012). https://doi.org/10.5194/tc-6-143-2012

    Article  Google Scholar 

  4. M. Steele, R. Morley, and W. Ermold, “PHC: A global ocean hydrography with a high-quality Arctic Ocean,” J. Clim. 14 (9), 2079–2087 (2001).

    Article  Google Scholar 

  5. T. P. Boyer, J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T. D. O’ Brien, C. R. Paver, J. R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng, World Ocean Database. NOAA Atlas NESDIS 72, Ed. by S. Levitus (NOAA, Silver Spring, MD, 2013). https://doi.org/10.7289/V5NZ85MT

    Book  Google Scholar 

  6. E. C. Carmack, M. Yamamoto-Kawai, T. W. N. Haine, S. Bacon, B. A. Bluhm, C. Lique, H. Melling, I. V. Polyakov, F. Straneo, M.-L. Timmermans, and W. J. Williams, “Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans,” J. Geophys. Res.: Biogeosci. 121 (3), 675–717 (2016). https://doi.org/10.1002/2015JG003140

    Article  Google Scholar 

  7. K. Helfrich, “Thermals with background rotation and stratification,” J. Fluid Mech. 259, 265–280 (1994).

    Article  Google Scholar 

  8. J. Bush and A. Woods, “Vortex generation by line plumes in a rotating stratified fluid,” J. Fluid Mech. 388, 289–313 (1999).

    Article  Google Scholar 

  9. J. Morison and M. McPhee, “Lead convection measured with an autonomous underwater vehicle,” J. Geophys. Res. 103 (C2), 3257–3281 (1998).

    Article  Google Scholar 

  10. D. C. Smith IV and J. Morison, “Nonhydrostatic haline convection under leads in sea ice,” J. Geophys. Res. 103 (C2), 3233–3247 (1998).

    Article  Google Scholar 

  11. G. L. Mellor, User Guide for A Three-Dimensional, Primitive Equation, Numerical Ocean Model (Princeton University, Princeton, NJ, 2004).

    Google Scholar 

  12. G. L. Mellor and T. Yamada, “A hierarchy of turbulence closure models for planetary boundary layers,” J. Atmos. Sci. 31 (7), 1791–1806 (1974).

    Article  Google Scholar 

  13. M. Jin, J. Hutchings, Yu. Kawaguchi, and T. Kikuchi, “Ocean mixing with lead-dependent subgrid scale brine rejection parameterization in a climate model,” J. Ocean Univ. China (11 (4), 473–480 (2012).

    Article  Google Scholar 

  14. E. D. Skyllingstad and W. D. Denbo, “Turbulence beneath sea ice and leads: a coupled sea ice/large eddy simulation study,” J. Geophys. Res. 106 (C2), 2477–2497 (2001). https://doi.org/10.1029/1999JC000091

    Article  Google Scholar 

  15. P. Duffy and K. Caldeira, “Sensitivity of simulated salinity in a three-dimensional ocean model to upper ocean transport of salt from sea-ice formation,” Geophys. Res. Lett. 24 (11), 1323–1326 (1997).

    Article  Google Scholar 

  16. P. Duffy, M. Eby, and A. Weaver, “Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model,” Geophys. Res. Lett. 26 (12), 1739–1742 (1999).

    Article  Google Scholar 

  17. A. T. Nguyen, D. Menemenlis, and R. Kwok, “Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization,” J. Geophys. Res. 114 (C11014) (2009).

  18. R. Timmermann and A. Beckmann, “Parameterization of vertical mixing in the Weddell Sea,” Ocean Modell. 6 (1), 83–100 (2004).

    Article  Google Scholar 

  19. T. Paluszkiewicz and R. D. Romea, “A one-dimensional model for the parameterization of deep convection in the ocean,” Dyn. Atmos. Oceans 26, 95–130 (1997).

    Article  Google Scholar 

  20. N. G. Iakovlev, E. M. Volodin, D. V. Sidorenko, and A. S. Gritsun, “Role of penetrative convection under the ice in the formation of the state of the world ocean,” Izv., Atmos. Ocean. Phys. 54, 594–607 (2018). https://doi.org/10.1134/s0002351518060147

    Article  Google Scholar 

  21. A. V. Glazunov, “On the effect that the direction of geostrophic wind has on turbulence and quasiordered large-scale structures in the atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 46, 727–747 (2010).

    Article  Google Scholar 

  22. IOC, SCOR, and IAPSO. The International Thermodynamic Equation of Sea Water-2010: Calculation and Use of Thermodynamic Properties, no. 56 of Intergovernmental Oceanographic Commission, Manuals and Guides (UNESCO, Paris, 2010).

  23. J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved subgrid scale models for large-eddy simulation,” Am. Inst. Aeronaut. Astronaut. Pap. 80, 1357 (1980).

    Google Scholar 

  24. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3 (7), 1760–1765 (1991).

    Article  Google Scholar 

  25. A. V. Glazunov, “Large-eddy simulation modeling of turbulence with the use of a mixed dynamic localized closure. Part 1. Formulation of the problem, model description, and diagnostic numerical tests,” Izv., Atmos. Ocean. Phys. 45 (1), 5–24 (2009).

    Article  Google Scholar 

  26. A. V. Glazunov, U. Rannik, V. Stepanenko, V. Lykosov, M. Auvinen, T. Vesala, and I. Mammarella, “Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer,” Geosci. Model Dev. 9 (9), 2925–2949 (2016).

    Article  Google Scholar 

  27. A. V. Glazunov, “Numerical modeling of turbulence and fine-particle pollutant transport in urban canyons,” Vychisl. Metody Program. 19, 17–37 (2018).

    Google Scholar 

  28. G. A. Maykut and N. Untersteiner, “Some results from a time dependent thermodynamic model of sea ice,” J. Geophys. Res. 76, 1550–1575 (1971).

    Article  Google Scholar 

  29. J. W. Deardorff, “Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection,” J. Atmos. Sci. 27 (8), 1211–1213 (1970).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The development of computer technologies was supported by the Moscow Center for Fundamental and Applied Mathematics world-class research center. Analysis and graphic representation of PHC 3.0 and WOA13 hydrologic data are from Schlitzer R. OceanDataView (https://odv.awi.de, 2019).

Funding

This work (the analysis of results and their interpretation) was supported by the Russian Foundation for Basic Research, project no. 18-05-60184.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Glazunov or N. G. Iakovlev.

Additional information

Translated by N. Tret’yakova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazunov, A.V., Iakovlev, N.G. Study of the Ocean Boundary Layer Convection under Inhomogeneous Ice with the Help of the Large-Eddy Simulation Model. Izv. Atmos. Ocean. Phys. 56, 268–278 (2020). https://doi.org/10.1134/S000143382003007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382003007X

Keywords:

Navigation