Skip to main content
Log in

Sea surface wind and Sea ice in the Barents Sea using microwave sensing data from Meteor-M N1 and GCOM-W1 satellites in January–March 2013

  • Stydying Seas and Oceans from Space
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Application of satellite passive microwave sensing for the retrieval of key climatic parameters in the Barents Sea is considered. Fields of surface wind, atmosphere water vapor content and cloud liquid water content were found from MTVZA-GY radiometer onboard the Meteor-M N1 satellite and AMSR2 onboard the GCOM-W1 satellite with the use of original algorithms. The fields are in a good agreement with the ancillary remote and in situ measurements, which follows from the analysis of the evolution of the extra tropical and polar cyclones and cold air outbreaks with storm winds leading to intense air-sea interaction, and the formation and drift of sea ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bobylev, L.P., Zabolotskikh, E.V., Mitnik, L.M., and Mitnik, M.L., Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing, IEEE Trans. Geosci. Remote Sens., 2010, vol. 49, no. 1, pp. 283–294.

    Article  Google Scholar 

  • Boldyrev, V.V., Gorobets, N.N., Il’gasov, P.A., et al., Satellite microwave scanner/sounder MTVZA-GYa, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2008, vol. 5, no. 1, pp. 243–248.

    Google Scholar 

  • Buzin, I.V., The problem of multiyear ice spread in the Barents Sea in the second half of the 20th century and early 21st century, Probl. Arkt. Antarkt., 2009, vol. 3, no. 83, pp. 114–126.

    Google Scholar 

  • Comiso, J.C., Large decadal decline of the Arctic multiyear ice cover, J. Clim., 2012, vol. 25, pp. 1176–1193. doi 10.1175/JCLI-D-11-00113.1

    Article  Google Scholar 

  • Comiso, J.C. and Hall, D.K., Climate trends in the Arctic as observed from space, WIREs Clim. Change, 2014, vol. 5, pp. 389–409. doi 10.1002/wcc.277

    Article  Google Scholar 

  • Gidrometeorologiya i gidrokhimiya morei SSSR (Hydrometeorology and Hydrochemistry of the USSR Seas), vol. 1: Barentsevo more. 1. Gidrometeorologicheskie usloviya (The Barents Sea. 1. Hydrometeorological Conditions), Terziev, F.S, Ed., Leningrad: Gidrometeoizdat, 1990.

  • Gurvich, I.A. and Pichugin, M.K., Research of characteristics of intensive mesoscale cyclones over the Far Eastern seas on the basis of satellite multisensor sounding, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013, vol. 10, no. 1, pp. 51–59.

    Google Scholar 

  • Hillger, D., Kopp, T., Lee, T., et al., First-light imagery from Suomi NPP VIIRS, Bull. Am. Meteorol. Soc., 2013, vol. 94, no. 7, pp. 1019–1029. doi 10.1175/BAMS-D-12-00097.1

    Article  Google Scholar 

  • Imaoka, K., Kachi, M., Fujii, H., et al., Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change, Proc. IEEE, 2010, vol. 98, no. 5, pp. 717–734.

    Article  Google Scholar 

  • Inoue, J., Hori, M.E., and Takaya, K., The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly, J. Clim., 2012, vol. 25, no. 7, pp. 2561–2568. doi 10.1175/JCLID-11-00449.1

    Article  Google Scholar 

  • Ivanov, V.V., Alekseev, V.A., Alekseeva, T.A., et al., Is Arctic ice cover becoming seasonal?, Issled. Zemli Kosmosa, 2013, no. 4, pp. 50–65.

    Google Scholar 

  • Jackson, T.J., Bindlish, R., Mladenova, I., et al., Soil moisture validation in the US, Presentation in JAXA Workshop. Tokyo, Japan, January 16, 2014.

    Google Scholar 

  • Kachi, M., Naoki, K., Hori, M., et al., AMSR2 validation results, in Proceedings of IGARSS-2013, Melbourne, Australia, 2013, pp. 831–834. doi 10.1109/IGARSS.2013.672128710.1109/IGARSS.2013.6721287

    Google Scholar 

  • Mitnik, L.M., Issledovanie oblakov metodom SVCh-radiometrii. Obzornaya informatsiya (Study of Clouds by Microwave Radiometry. A Review), Obninsk: VNIIGMIMTsD, 1979.

    Google Scholar 

  • Mitnik, L.M. and Mitnik, M.L., AMSR-E advanced wind speed retrieval algorithm and its application to marine weather systems, in Proceedings of IGARSS-2010, Hawaii, USA, 2010, pp. 3224–3227.

    Google Scholar 

  • Mitnik, L.M. and Mitnik, M.L., An algorithm for reconstructing the near-water wind velocity from measurements by the AMSR-E microwave radiometer with Aqua satellite, Issled. Zemli Kosmosa, 2011, no. 6, pp. 34–44.

    Google Scholar 

  • Mitnik, L.M., Mitnik, M.L., Gurvich, I.A., et al., Multisensor satellite sensing of winter cyclones with storm and hurricane winds in Northern Pacific Ocean, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013a, vol. 10, no. 4, pp. 161–174.

    Google Scholar 

  • Mitnik, L.M., Mitnik, M.L., and Zabolotskikh, E.V., Japan satellite GCOM-W1: simulation, calibration and first results of the retrievals of atmospheric and oceanic parameters, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013b, vol. 10, no. 3, pp. 135–141.

    Google Scholar 

  • Overland, J.E. and Wang, M., Large-scale atmospheric circulation changes are associated with the recent loss of Arctic Sea ice, Tellus, 2010, vol. 62A, pp. 1–9.

    Article  Google Scholar 

  • Overland, J.E., Francis, J.A., Hanna, E., et al., The recent shift in early summer Arctic atmospheric circulation, Geophys. Res. Lett., 2012, vol. 39, L19804. doi 10.1029/2012GL053268

    Article  Google Scholar 

  • Parkinson, C.L. and Comiso, J.C., On the 2012 record low Arctic Sea ice cover: Combined impact of preconditioning and an August storm, Geophys. Res. Lett., 2013, vol. 40, pp. 1356–1361. doi 10.1002/grl.50349

    Article  Google Scholar 

  • Pavlova, O., Pavlov, V., and Gerland, S., The impact of winds and sea surface temperatures on the Barents Sea ice extent, a statistical approach, J. Mar. Syst., 2014, vol. 130, pp. 248–255. doi 10.1016/j.jmarsys.2013.02.011

    Article  Google Scholar 

  • Sato, K., Inoue, J., and Watanabe, M., Relationship between the Barents Sea ice retreat and atmospheric response, in Proceedings of the 29th International Symposium on Okhotsk Sea and Sea Ice, 16–19 February 2014, Mombetsu, Hokkaido, Japan, 2014, pp. 244–247.

    Google Scholar 

  • Smedsrud, L.H., Esau, I., Ingvaldsen, R.B., et al., The role of the Barents Sea in the Arctic climate system, Rev. Geophys., 2013, vol. 51, pp. 415–449.

    Article  Google Scholar 

  • Spreen, G., Kaleschke, L., and Heygster, G., Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., 2008, vol. 113, no. C2. doi 10.1029/2005JC003384

    Google Scholar 

  • Zabolotskikh, E.V., Mitnik, L.M., and Chapron, B., New approach for severe marine weather study using satellite passive microwave sensing, Geophys. Res. Lett., 2013, vol. 40, no. 13, pp. 3347–3350.

    Article  Google Scholar 

  • Zabolotskikh, E.V., Mitnik, L.M., and Chapron, B., An updated geophysical model for AMSR-E and SSMIS brightness temperature simulations over oceans, J. Remote Sens, 2014, vol. 6, no. 3, pp. 2317–2342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Mitnik.

Additional information

Original Russian Text © L.M. Mitnik, M.L. Mitnik, G.M. Chernyavsky, I.V. Cherny, A.V. Vykochko, M.K. Pichugin, E.V. Zabolotskikh, 2015, published in Issledovanie Zemli iz Kosmosa, 2015, No. 6, pp. 36–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitnik, L.M., Mitnik, M.L., Chernyavsky, G.M. et al. Sea surface wind and Sea ice in the Barents Sea using microwave sensing data from Meteor-M N1 and GCOM-W1 satellites in January–March 2013. Izv. Atmos. Ocean. Phys. 52, 1041–1050 (2016). https://doi.org/10.1134/S000143381609019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143381609019X

Keywords

Navigation