Skip to main content
Log in

Review of Methods to Retrieve Sea-Ice Parameters from Satellite Microwave Radiometer Data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Sea-ice monitoring using long-term data from satellite passive microwave instruments allows one to make quantitative estimates of climatic trends. These numerical estimates depend on the methods used for sea-ice parameter retrievals. This work presents a review of methods to retrieve sea-ice parameters from the data of satellite microwave radiometers. An analysis of the physics of the formation of microwave radiation over sea ice and its transport in the atmosphere makes it possible to determine the main sources of errors and classify methods. This paper considers the basic principles underlying the methods, assumptions, and approximations used and it analyzes the verification data. Weather filters are considered to identify the areas of open water. A comparative analysis of the advantages and limitations of the main sea-ice concentration retrieval methods is provided by measurements of satellite microwave radiometers such as the Radiometers of the Special Sensor Microwave/Imager series (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR). A review of satellite products based on SSM/I, AMSR-E, and AMSR2 data, as well as available Internet resources with operational and historical sea-ice data, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Vihma, “Effects of Arctic sea ice decline on weather and climate: A review,” Surv. Geophys. 35 (5), 1175–1214 (2014).

    Article  Google Scholar 

  2. J. C. Comiso, “Sea ice concentration and extent,” in Encyclopedia of Remote Sensing, Ed. by E. G. Njoku (Springer, New York, 2014), pp. 727–743.

    Google Scholar 

  3. P. R. Teleti and A. J. Luis, “Sea ice observations in polar regions: Evolution of technologies in remote sensing,” Int. J. Geosci. 4 (7), 1031–1050 (2013).

    Article  Google Scholar 

  4. L. M. Mitnik and M. L. Mitnik, “Calibration and validation as prerequisite components of satellite microwave radiometer measurements from Meteor-M series 2 satellites,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (1), 95–104 (2016).

    Article  Google Scholar 

  5. F. J. Wentz and M. Schabel, “Precise climate monitoring using complementary satellite data sets,” Nature 403 (6768), 414–416 (2000).

    Article  Google Scholar 

  6. V. V. Ivanov, V. A. Alekseev, T. A. Alekseeva, N. V. Koldunov, I. A. Repina, and A. V. Smirnov, “Does Arctic Ocean ice cover become seasonal?,” Issled. Zemli Kosmosa 4, 50–65 (2013).

    Google Scholar 

  7. O. M. Johannessen, S. I. Kuzmina, L. P. Bobylev, and M. W. Miles, “Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation,” Tellus A: Dyn. Meteorol. Oceanogr. 68 (1), 28234 (2016). https://doi.org/10.3402/tellusa.v68.28234

    Article  Google Scholar 

  8. J. C. Comiso and D. K. Hall, “Climate trends in the Arctic as observed from space: Climate trends in the Arctic as observed from space,” Wiley Interdiscip. Rev.: Clim. Change 5 (3), 389–409 (2014).

    Google Scholar 

  9. E. V. Shalina and L. P. Bobylev, “Change in Arctic ice conditions according to satellite observations,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 14 (6), 28–41 (2017).

    Article  Google Scholar 

  10. J. C. Comiso, C. L. Parkinson, R. Gersten, and L. Stock, “Accelerated decline in the Arctic sea ice cover,” Geophys. Res. Lett. 35, L01703 (2008). doi https://doi.org/10.1029/2007GL031972

    Article  Google Scholar 

  11. R. Kwok, G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, “Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008,” J. Geophys. Res. 114 (C7) (2009). https://doi.org/10.1029/JC005312

  12. J. C. Stroeve, M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, “The Arctic’s rapidly shrinking sea ice cover: A research synthesis,” Clim. Change 110 (3-4), 1005–1027 (2012).

    Article  Google Scholar 

  13. V. G. Smirnov, Satellite Methods for Determining the Characteristics of Sea Ice Cover (AANII, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  14. S. Andersen, R. Tonboe, L. Kaleschke, G. Heygster, and L. T. Pedersen, “Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice,” J. Geophys. Res. 112 (C8) (2007). https://doi.org/10.1029/2006JC003543

  15. W. N. Meier, “Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas,” IEEE Trans. Geosci. Remote Sens. 43 (6), 1324–1337 (2005).

    Article  Google Scholar 

  16. V. G. Smirnov, A. V. Bushuev, N. Yu. Zakhvatkina, and V. S. Loshchilov, “Satellite monitoring of sea ice,” Probl. Arkt. Antarkt. 85 (2), 62–76 (2010).

    Google Scholar 

  17. N. Ivanova, O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, “Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms,” IEEE Trans. Geosci. Remote Sens. 52 (11), 7233–7246 (2014).

    Article  Google Scholar 

  18. I. E. Frolov, Oceanography and Sea Ice (Paulsen, Moscow, 2011) [in Russian].

    Google Scholar 

  19. V. V. Tikhonov, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, I. A. Repina, and N. Yu. Komarova, “Monitoring of polar sea ice using satellite microwave radiometry,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (5), 150–169 (2015).

    Google Scholar 

  20. V. V. Tikhonov, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, I. A. Repina, and N. Yu. Komarova, “Satellite microwave radiometry of sea ice of polar regions: a review,” Izv., Atmos. Ocean. Phys. 52 (9), 1012–1030 (2016).

    Article  Google Scholar 

  21. D. J. Cavalieri, P. Gloersen, and W. J. Campbell, “Determination of sea ice parameters with the Nimbus 7 SMMR,” J. Geophys. Res. 89 (D4), 5355–5369 (1984).

    Article  Google Scholar 

  22. E. Svendsen, K. Kloster, B. Farrelly, O. M. Johannessen, J. A. Johannessen, et al., “Norwegian remote sensing experiment: Evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research,” J. Geophys. Res. 88 (C5), 2781–2791 (1983).

    Article  Google Scholar 

  23. A. B. Uspensky, V. V. Asmus, A. A. Kozlov, E. Kramchaninova, A. M. Streltsov, G. Ya. Chernyavsky, and I. V. Cherny, “Absolute calibration of the MTVZA-GY microwave radiometer atmospheric sounding channels,” Izv., Atmos. Ocean. Phys. 53 (9), 1192–1204 (2017).

    Article  Google Scholar 

  24. D. R. Gayfulin, M. D. Tsyrulnikov, A. B. Uspensky, E. K. Kramchaninova, S. A. Uspensky, P. I. Svirenko, and M. E. Gorbunov, “The usage of MTVZA-GYa satellite microwave radiometer observations in the data assimilation system of the Hydrometcenter of Russia,” Russ. Meteorol. Hydrol. 42 (9), 564–573 (2017).

    Article  Google Scholar 

  25. M. V. Bukharov, “Identification of the properties of the Arctic and Antarctic ice cover from the MTVZA-GYa microwave radiometer data,” Russ. Meteorol. Hydrol. 40 (7), 470–476 (2015).

    Article  Google Scholar 

  26. F. J. Wentz, SSM/I Version-7 Calibration Report (Remote Sensing Systems, Santa Rosa, California, 2013).

    Google Scholar 

  27. J. C. Comiso, “Characteristics of Arctic winter sea ice from satellite multispectral microwave observations,” J. Geophys. Res. 91 (C1), 975–994 (1986).

    Article  Google Scholar 

  28. T. Markus and D. J. Cavalieri, “An enhancement of the NASA Team sea ice algorithm,” IEEE Trans. Geosci. Remote Sens. 38 (3), 1387–1398 (2000).

    Article  Google Scholar 

  29. E. Svendsen, C. Matzler, and T. C. Grenfell, “A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz,” Int. J. Remote Sens. 8 (10), 1479–1487 (1987).

    Article  Google Scholar 

  30. L. Kaleschke, C. Lüpkes, T. Vihma, J. Haarpaintner, A. Bochert, J. Hartmann, and G. Heygster, “SSM/I sea ice remote sensing for mesoscale ocean–atmosphere interaction analysis,” Can. J. Remote Sens. 27 (5), 526–537 (2001).

    Article  Google Scholar 

  31. D. M. Smith, “Extraction of winter total sea-ice concentration in the Greenland and Barents seas from SSM/I Data,” Remote Sens. 17 (13), 2625–2646 (1996).

    Article  Google Scholar 

  32. L. T. Pedersen, Improved Spatial Resolution of SSM/I Products: Final Rep. No. 145, Ed. by S. Sandven (Nansen Environmental and Remote Center, Bergen, Norway, 1998).

    Google Scholar 

  33. S. Kern, “A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data,” Int. J. Remote Sens. 25 (21), 4555–4582 (2004).

    Article  Google Scholar 

  34. S. Kern and G. Heygster, “Sea-ice concentration retrieval in the Antarctic based on the SSM/I 85.5 GHz polarization,” Ann. Glaciol. 33 (1), 109–114 (2001).

    Article  Google Scholar 

  35. T. Kawanishi, T. Sezai, Y. Ito, K. Imaoka, T. Takeshima, et al., “The advanced microwave scanning radiometer for the Earth observing system (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies,” IEEE Trans. Geosci. Remote Sens. 41 (2), 184–194 (2003).

    Article  Google Scholar 

  36. K. Imaoka, M. Kachi, M. Kasahara, N. Ito, K. Nakagawa, and T. Oki, “Instrument performance and calibration of AMSR-E and AMSR2,” Int. Arch. Photogramm. Remote Sens. Spec. Inf. Sci. 38 (8), 13–18 (2010).

    Google Scholar 

  37. J. C. Comiso, M. Kachi, M. Kasahara, N. Ito, K. Nakagawa, and T. Oki, “Enhanced sea ice concentrations and ice extents from AMSR-E data,” J. Remote Sens. Soc. Jpn. 29 (1), 199–215 (2009).

    Google Scholar 

  38. J. C. Comiso, D. J. Cavalieri, and T. Markus, “Sea ice concentration, ice temperature, and snow depth using AMSR-E data,” IEEE Trans. Geosci. Remote Sens. 41 (2), 243–252 (2003).

    Article  Google Scholar 

  39. G. Spreen, L. Kaleschke, and G. Heygster, “Sea ice remote sensing using AMSR-E 89-GHz channels,” J. Geophys. Res. Oceans 113 (C2) (2008). https://doi.org/10.1029/2005JC003384

  40. N. Ivanova, L. T. Pedersen, R. T. Tonboe, S. Kern, G. Heygster, T. Lavergne, A. Sorensen, et al., “Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges,” Cryosphere 9, 1797–1817 (2015).

    Article  Google Scholar 

  41. A. Beitsch, S. Kern, and L. Kaleschke, “Comparison of SSM/I and AMSR-E sea ice concentrations with ASPeCt ship observations around Antarctica,” IEEE Trans. Geosci. Remote Sens. 53 (4), 1985–1996 (2015).

    Article  Google Scholar 

  42. B. G. Kutuza, O. I. Yakovlev, and M. V. Danilychev, Satellite Monitoring of the Earth: Microwave Radiometry of the Atmosphere and Surface (Lenand, Moscow, 2016) [in Russian].

    Google Scholar 

  43. M. Shokr, A. Lambe, and T. Agnew, “A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: An application to 85-GHz passive microwave data,” IEEE Trans. Geosci. Remote Sens. 46 (12), 4104–4121 (2008).

    Article  Google Scholar 

  44. E. A. Sharkov, Radiothermal Remote Sensing of the Earth. Physical Bases (IKI RAN, Moscow, 2014), Vol. 1 [in Russian].

    Google Scholar 

  45. J. A. Maslanik, “Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data,” Int. J. Remote Sens. 13 (1), 37–54 (1992).

    Article  Google Scholar 

  46. R. O. Ramseier, “Sea ice validation,” in DMSP Special Sensor Microwave/Imager Calibration/Validation, Ed. by J. P. Hollinger (Naval Research Laboratory, Washington, DC, 1991).

    Google Scholar 

  47. R. Tonboe and J. Lavelle, The EUMETSAT OSI SAF Sea Ice Concentration Algorithm. Algorithm Theoretical Basis Document (Ocean and Sea Ice SAF, 2016).

    Google Scholar 

  48. V. V. Tikhonov, I. A. Repina, T. A. Alexeeva, V. V. Ivanov, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, and N. Yu. Komarova, “Arctic sea ice cover reconstruction on the basis of SSM/I data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 10 (5), 182–193 (2013).

    Google Scholar 

  49. V. V. Tikhonov, I. A. Repina, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, and N. Yu. Komarova, “New algorithm for the reconstruction of ice cover concentration based on passive microwave sounding data,” Issled. Zemli Kosmosa, No. 2, 35–43 (2014).

    Google Scholar 

  50. V. V. Tikhonov, I. A. Repina, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, and N. Yu. Komarova, “Integrative algorithm of determining ice conditions in Polar Regions by data of satellite microwave radiometry (VASIA2),” Izv., Atmos. Ocean. Phys. 51 (9), 914–928 (2015).

    Article  Google Scholar 

  51. I. A. Repina, V. V. Tikhonov, T. A. Alekseeva, V. V. Ivanov, M. D. Raev, E. A. Sharkov, D. A. Boyarskii, and N. Yu. Komarova, “Electrodynamical model of Arctic ice-cover radiation for solving problems of satellite microwave radiometry,” Issled. Zemli Kosmosa, No. 5, 29–36 (2012).

    Google Scholar 

  52. WMO Sea-Ice Nomenclature (WMO No. 259), Vol. 1: Terminology and Codes (WMO, 2014).

  53. Microwave Remote Sensing of Sea Ice, Ed. by F. D. Carsey (American Geophysical Union, Washington, D.C., 1992).

    Google Scholar 

  54. R. T. Tonboe, “The simulated sea ice thermal microwave emission at window and sounding frequencies,” Tellus A 62 (3), 333–344 (2010).

    Article  Google Scholar 

  55. B. J. Hwang, J. K. Ehn, D. G. Barber, R. Galley, and T. C. Grenfell, “Investigations of newly formed sea ice in the Cape Bathurst polynya: 2. Microwave emission,” J. Geophys. Res.: Oceans 112 (C5) (2007). https://doi.org/10.1029/2006JC003703

  56. R. D. Ketchum and A. W. Lohanick, “Passive microwave imagery of sea ice at 33 GHz,” Remote Sens. Environ. 9 (3), 211–223 (1980).

    Article  Google Scholar 

  57. R. Kwok, J. C. Comiso, S. Martin, and R. Drucker, “Ross Sea polynyas: Response of ice concentration retrievals to large areas of thin ice,” J. Geophys. Res.: Oceans 112 (C12) (2007). https://doi.org/10.1029/2006JC003967

  58. M. Mäkynen and M. Similä, “Thin ice detection in the Barents and Kara seas with AMSR-E and SSMIS radiometer data,” IEEE Trans. Geosci. Remote Sens. 53 (9), 5036–5053 (2015).

    Article  Google Scholar 

  59. K. Naoki, J. Ukita, F. Nishio, M. Nakayama, J. C. Comiso, and A. Gasiewski, “Thin sea ice thickness as inferred from passive microwave and in situ observations,” J. Geophys. Res. 113 (C2) (2008). https://doi.org/10.1029/2007JC004270

  60. M. Shokr, K. Asmus, and T. A. Agnew, “Microwave emission observations from artificial thin sea ice: The ice-tank experiment,” IEEE Trans. Geosci. Remote Sens. 47 (1), 325–338 (2009).

    Article  Google Scholar 

  61. T. C. Grenfell, D. J. Cavalieri, J. C. Comiso, M. R. Drinkwater, R. G. Onstott, I. Rubinstein, K. Steffen, and D. P. Winebrenner, “Considerations for microwave remote sensing of thin sea ice,” in Microwave Remote Sensing of Sea Ice, Ed. by F. D. Carsey (American Geophysical Union, Washington, D.C., 1992), pp. 291–301 (1992).

    Book  Google Scholar 

  62. T. Markus, D. J. Cavalieri, A. Gasiewski, M. Klein, J. A. Maslanik, D. C. Powell, et al., “Microwave signatures of snow on sea ice: Observations,” IEEE Trans. Geosci. Remote Sens. 44 (11), 3081–3090 (2006).

    Article  Google Scholar 

  63. D. G. Barber, A. K. Fung, T. C. Grenfell, S. V. Nghiem, R. G. Onstott, V. I. Lytle, et al., “The role of snow on microwave emission and scattering over first-year sea ice,” IEEE Trans. Geosci. Remote Sens. 36 (5), 1750–1763 (1998).

    Article  Google Scholar 

  64. D. C. Powell, T. Markus, D. J. Cavalieri, A. J. Gasiewski, M. Klein, J. A. Maslanik, et al., “Microwave signatures of snow on sea ice: Modeling,” IEEE Trans. Geosci. Remote Sens. 44 (11), 3091–3102 (2006).

    Article  Google Scholar 

  65. S. Willmes, M. Nicolaus, and C. Haas, “The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: A model study,” Cryosphere 8 (3), 891–904 (2014).

    Article  Google Scholar 

  66. T. Wilheit, W. Nordberg, J. Blinn, W. Campbell, and A. Edgerton, “Aircraft measurements of microwave emission from Arctic sea ice,” Remote Sens. Environ. 2, 129–139 (1971).

    Article  Google Scholar 

  67. B. E. Troy, J. P. Hollinger, R. M. Lerner, and M. M. Wisler, “Measurement of the microwave properties of sea ice at 90 GHz and lower frequencies,” J. Geophys. Res.: Oceans 86 (C5), 4283–4289 (1981).

    Article  Google Scholar 

  68. NORSEX Group, “Norwegian remote sensing experiment in a marginal ice zone,” Science, 220 (4599), 781–787 (1983).

  69. W. B. Tucker, T. C. Grenfell, R. G. Onstott, D. K. Perovich, A. J. Gow, R. A. Snuchman, and L. L. Sutherland, “Microwave and physical properties of sea ice in the winter marginal ice zone,” J. Geophys. Res. 96 (C3), 4573–4587 (1991).

    Article  Google Scholar 

  70. W. B. Tucker, A. J. Gow, and W. F. Weeks, “Physical properties of summer sea ice in the Fram Strait,” J. Geophys. Res.: Oceans 92 (C7), 6787–6803 (1987).

    Article  Google Scholar 

  71. T. C. Grenfell, “Surface-based passive microwave observations of sea ice in the Bering and Greenland seas,” IEEE Trans. Geosci. Remote Sens., No. 3, 378–382 (1986).

  72. C. Matzler, R. Ramseier, and E. Svendsen, “Polarization effects in sea-ice signatures,” IEEE J. Ocean. Eng. 9 (5), 333–338 (1984).

    Article  Google Scholar 

  73. T. J. Hewison and S. J. English, “Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths,” IEEE Trans. Geosci. Remote Sens. 37 (4), 1871–1879 (1999).

    Article  Google Scholar 

  74. J. C. Comiso, “Sea ice effective microwave emissivities from satellite passive microwave and infrared observations,” J. Geophys. Res.: Oceans 88 (C12), 7686–7704 (1983).

    Article  Google Scholar 

  75. N. Mathew, G. Heygster, and C. Melsheimer, “Surface emissivity of the Arctic sea ice at AMSR-E frequencies,” IEEE Trans. Geosci. Remote Sens. 47 (12), 4115–4124 (2009).

    Article  Google Scholar 

  76. J. A. Haggerty and J. A. Curry, “Variability of sea ice emissivity estimated from airborne passive microwave measurements during FIRE SHEBA,” J. Geophys. Res.: Atmos. 106 (D14), 15265–15277 (2001).

    Article  Google Scholar 

  77. Q. Liu, F. Weng, and S. J. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49 (4), 1238–1250 (2011).

    Article  Google Scholar 

  78. J. P. Hollinger, “Passive microwave measurements of sea surface roughness,” IEEE Trans. Geosci. Electron. 9 (3), 165–169 (1971).

    Article  Google Scholar 

  79. A. Stogryn, “Equations for calculating the dielectric constant of saline water,” IEEE Trans. Microwave Theory Tech. 19 (8), 733–736 (1971).

    Article  Google Scholar 

  80. A. Stogryn, “The apparent temperature of the sea at microwave frequencies,” IEEE Trans. Antennas Propag. 15 (2), 278–286 (1967).

    Article  Google Scholar 

  81. T. Meissner and F. J. Wentz, “The Emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles,” IEEE Trans. Geosci. Remote Sens. 50 (8), 3004–3026 (2012).

    Article  Google Scholar 

  82. V. Raizer, “Macroscopic foam-spray models for ocean microwave radiometry,” IEEE Trans. Geosci. Remote Sens. 45 (10), 3138–3144 (2007).

    Article  Google Scholar 

  83. M. D. Anguelova and P. W. Gaiser, “Dielectric and radiative properties of sea foam at microwave frequencies: Conceptual understanding of foam emissivity,” Remote Sens. 4 (5), 1162–1189 (2012).

    Article  Google Scholar 

  84. M. D. Anguelova and P. W. Gaiser, “Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties,” Remote Sens. Environ. 139, 81–96 (2013).

    Article  Google Scholar 

  85. N. Reul and B. Chapron, “A model of sea-foam thickness distribution for passive microwave remote sensing applications,” J. Geophys. Res.: Oceans 108 (C10), 19.1–19.14 (2003).

  86. E.-B. Wei, “Effective medium approximation model of sea foam layer microwave emissivity of a vertical profile,” Int. J. Remote Sens. 34 (4), 1180–1193 (2013).

    Article  Google Scholar 

  87. M. A. Aziz, S. C. Reising, W. E. Asher, L. A. Rose, P. W. Gaiser, and K. A. Horgan, “Effects of air–sea interaction parameters on ocean surface microwave emission at 10 and 37 GHz,” IEEE Trans. Geosci. Remote Sens. 43 (8), 1763–1774 (2005).

    Article  Google Scholar 

  88. P. W. Rosenkranz, “Rough-sea microwave emissivities measured with the SSM/I,” IEEE Trans. Geosci. Remote Sens. 30 (5), 1081–1085 (1992).

    Article  Google Scholar 

  89. A. Shibata, “Features of ocean microwave emission changed by wind at 6 GHz,” J. Oceanogr 62 (3), 321–330 (2006).

    Article  Google Scholar 

  90. V. D. Stepanenko, G. G. Shchukin, L. P. Bobylev, and S. Yu. Matrosov, Radiothermolocation in Meteorology (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  91. A. A. Sin’kevich, V. D. Stepanenko, and Yu. A. Dovgalyuk, Issues in Clouds Physics. The 50th Anniversary of the Physics Department of the Main Geophysical Observatory (Asterion, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  92. H. J. Liebe and D. H. Layton, Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NTIA Rep. 87-24, Nat. Tech. Inf. Service, Boulder, Colorado, 1987.

  93. T. Meissner and F. J. Wentz, “The complex dielectric constant of pure and sea water from microwave satellite observations,” IEEE Trans. Geosci. Remote Sens. 42 (9), 1836–1849 (2004).

    Article  Google Scholar 

  94. B. Chapron, A. Bingham, F. Collard, C. Donlon, J. A. Johannessen, J. F. Piolle, and N. Reul, “Ocean remote sensing data integration—examples and outlook,” in Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Ed. by J. Hall, D. E. Harrison, and D. Stammer (ESA, 2010). https://doi.org/10.5270/OceanObs09.pp.12

  95. M. Li, J. Liu, Z. Wang, H. Wang, Z. Zhang, L. Zhang, and Q. Yang, “Assessment of sea surface wind from NWP reanalyses and satellites in the Southern Ocean,” J. Atmos. Ocean. Technol. 30 (8), 1842–1853 (2013).

    Article  Google Scholar 

  96. E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, “GCOM-W1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic,” Remote Sens. Environ. 147, 89–98 (2014).

    Article  Google Scholar 

  97. E. V. Zabolotskikh, “Numerical simulation of AMSR2 high frequency channel measurements over sea ice and sea water surfaces,” in Proc. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 7686–7689.

  98. W. Meier and D. Notz, A note on the accuracy and reliability of satellite-derived passive microwave estimates of sea-ice extent, CliC Arctic Sea Ice Working Group Consensus Document, CLIC International Project Office, Tromsø, Norway, 2010.

    Google Scholar 

  99. T. Agnew and S. Howell, “The use of operational ice charts for evaluating passive microwave ice concentration data,” Atmos.-Ocean 41 (4), 317–331 (2003).

    Article  Google Scholar 

  100. M. A. Knuth and S. F. Ackley, “Summer and early-fall sea-ice concentration in the Ross Sea: Comparison of in situ ASPeCt observations and satellite passive microwave estimates,” Ann. Glaciol. 44, 303–309 (2006).

    Article  Google Scholar 

  101. C. Oelke, “Atmospheric signatures in sea-ice concentration estimates from passive microwaves: modelled and observed,” Int. J. Remote Sens. 18 (5), 1113–1136 (1997).

    Article  Google Scholar 

  102. J. C. Comiso and K. Steffen, “Studies of Antarctic sea ice concentrations from satellite data and their applications,” J. Geophys. Res. 106 (C12), 31361–31385 (2001).

    Article  Google Scholar 

  103. W. J. Emery, M. Radebaugh, C. W. Fowler, D. Cavalieri, and K. Steffen, “A comparison of sea ice parameters computed from advanced very high resolution radiometer and Landsat satellite imagery and from airborne passive microwave radiometry,” J. Geophys. Res. 96 (C12), 22075–22085 (1991).

    Article  Google Scholar 

  104. K. Steffen and A. J. Schweiger, “A multisensor approach to sea ice classification for the validation of DMSP-SSM/I passive microwave derived sea ice products,” Photogramm. Eng. Remote Sens. 56, 75–82 (1990).

    Google Scholar 

  105. G. Zibordi, M. Van Woert, G. P. Meloni, and I. Canossi, “Intercomparisons of sea ice concentration from SSM/I and AVHRR data of the Ross Sea,” Remote Sens. Environ. 53 (3), 145–152 (1995).

    Article  Google Scholar 

  106. C. Drüe and G. Heinemann, “High-resolution maps of the sea-ice concentration from MODIS satellite data,” Geophys. Res. Lett. 31 (20) (2004). https://doi.org/10.1029/2004GL020808

  107. J. Karvonen, “A sea ice concentration estimation algorithm utilizing radiometer and SAR data,” Cryosphere 8 (5), 1639–1650 (2014).

    Article  Google Scholar 

  108. S. T. Dokken, B. Hakansson, and J. Askne, “Inter-comparison of Arctic sea ice concentration using RADARSAT, ERS, SSM/I and in-situ data,” Can. J. Remote Sens. 26 (6), 521–536 (2000).

    Article  Google Scholar 

  109. N. Zakhvatkina, A. Korosov, S. Muckenhuber, S. Sandven, and M. Babiker, “Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images,” Cryosphere 11 (1), 33–46 (2017).

    Article  Google Scholar 

  110. J. C. Comiso, D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, “Passive microwave algorithms for sea ice concentration: A comparison of two techniques,” Remote Sens. Environ. 60 (3), 357–384 (1997).

    Article  Google Scholar 

  111. G. I. Belchansky and D. C. Douglas, “Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data,” Remote Sens. Environ. 81 (1), 67–81 (2002).

    Article  Google Scholar 

  112. E. Hanna and J. Bamber, “Derivation and optimization of a new Antarctic sea-ice record,” Int. J. Remote Sens. 22 (1), 113–139 (2001).

    Article  Google Scholar 

  113. R. Kwok, “Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion,” Geophys. Res. Lett. 29 (9) (2002). https://doi.org/10.1029/2002GL104787

  114. C. T. Swift, L. S. Fedor, and R. O. Ramseier, “An algorithm to measure sea ice concentration with microwave radiometers,” J. Geophys. Res. 90 (C1), 1087–1099 (1985).

    Article  Google Scholar 

  115. J. C. Comiso, SSM/I Concentrations Using the Bootstrap Algorithm, NASA Reference Publication 1380 (NASA, Goddard Space Flight Center, Greenbelt, Maryland, 1995).

    Google Scholar 

  116. L. T. Pedersen, Retrieval of Sea Ice Concentration by Means of Microwave Radiometry (Technical University of Denmark, Electromagnetics Institute, Lyngby, 1991).

    Google Scholar 

  117. C. L. Parkinson, J. C. Comiso, and H. J. Zwally, Nimbus-5 ESMR Polar gridded sea ice concentrations, 1978–2011, Ed. by W. Meier and J. Stroeve (NASA DAAC National Snow and Ice Data Center, Boulder, Colorado, 2004). https://doi.org/10.5067/W2PKTWMTY0TP

    Google Scholar 

  118. J. C. Comiso, R. A. Gersten, L. V. Stock, J. Turner, G. J. Perez, and K. Cho, “Positive trend in the Antarctic sea ice cover and associated changes in surface temperature,” J. Clim 30 (6), 2251–2267 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 17-77-30019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zabolotskikh.

Additional information

Translated by M. Cherbunina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskikh, E.V. Review of Methods to Retrieve Sea-Ice Parameters from Satellite Microwave Radiometer Data. Izv. Atmos. Ocean. Phys. 55, 110–128 (2019). https://doi.org/10.1134/S0001433818060166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818060166

Keywords:

Navigation