Skip to main content
Log in

Russian studies of atmospheric electricity in 2011–2014

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This review contains the most significant results of Russian studies in the field of atmospheric electricity in 2011–2014. It is part of the Russian National Report on Meteorology and Atmospheric Sciences to the International Association of Meteorology and Atmospheric Sciences (IAMAS). The report was presented and approved at the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG).1 The review is followed by a list of the main published works on the studies of atmospheric electricity of Russian scientists in 2011–2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Anisimov, S. V. Galichenko, and N. M. Shikhova, “Space charge and aeroelectric flows in the exchange layer: An experimental and numerical study,” Atmos. Res. 135–136, 244–254 (2014).

    Article  Google Scholar 

  2. S. V. Anisimov, E. A. Mareev, N. M. Shikhova, et al., “Aeroelectric structures and turbulence in the atmospheric boundary layer,” Nonlinear Process. Geophys. 20 (5), 819–824 (2013).

    Article  Google Scholar 

  3. A. A. Redin, G. V. Kupovykh, and A. S. Boldyrev, “Electrodynamic model of the atmospheric convective-turbulent surface layer,” Radiophys. Quantum Electron. 56 (11–12), 739–746 (2014).

    Article  Google Scholar 

  4. S. V. Anisimov, S. V. Galichenko, N. M. Shikhova, and K. V. Afinogenov, “Electricity of the convective atmospheric boundary layer: Field observations and numerical simulation,” Izv., Atmos. Ocean. Phys. 50 (4), 390–398 (2014).

    Article  Google Scholar 

  5. S. V. Anisimov and N. M. Shikhova, “Intermittency of turbulent aeroelectric field,” Atmos. Res. 135–136, 255–262 (2014).

    Article  Google Scholar 

  6. S. V. Anisimov, N. M. Shikhova, and K. V. Afinogenov, “Dynamics of undisturbed midlatitude atmospheric electricity: From observations to scaling,” Radiophys. Quantum Electron. 56 (11–12), 709–722 (2014).

    Article  Google Scholar 

  7. S. V. Anisimov and N. M. Shikhova, “Transport of electricity in atmospheric exchange layer,” Geofiz. Issled. 11 (1), 55–63 (2010).

    Google Scholar 

  8. S. V. Anisimov, S. V. Galichenko, and N. M. Shikhova, “Formation of electrically active layers in the atmosphere with temperature inversion,” Izv., Atmos. Ocean. Phys. 48 (4), 391–400 (2012).

    Article  Google Scholar 

  9. A. A. Redin and G. V. Kupovykh, “The origin of global and local variations of electric field nea the Earth’s surface,” Izv. Vyssh. Uchebn. Zaved., Estestv. Nauki, No. 1, 87–90 (2011).

    Google Scholar 

  10. A. I. Petrov, G. G. Petrova, I. N. Panchishkina, et al., “Izmeritel’nyi kompleks dlya issledovaniya elektrichestva prizemnogo sloya atmosfery,” Izv. Vyssh. Uchebn. Zaved., Estestv. Nauki, No. 3, 47–52 (2010).

    Google Scholar 

  11. A. I. Petrov, G. G. Petrova, and I. N. Panchishkina, “Profiles of polar conductivities and of Radon-222 concentration in the atmosphere by stable and labile stratification of surface layer,” Atmos. Res. 91 (2–4), 206–214 (2009).

    Article  Google Scholar 

  12. T. V. Kudrinskaya, K. A. Boldyreva, O. V. Novikova, et al., “Study of variations in the atmospheric electricity field at various levels of the Earth,” Nauchn. Mysl’ Kavk., No. 4, 95–98 (2012).

    Google Scholar 

  13. N. A. Berezinskii, T. V. Kudrinskaya, G. V. Kupovykh, et al., “Influence of earthquake preparation processes on Radon concentration and electric conductivity in the atmospheric surface layer,” Geol. Geofiz Yuga Ross., No. 2, 14–22 (2011).

    Google Scholar 

  14. T. V. Kudrinskaya, G. V. Kupovykh, and A. A. Redin, “Comparison of the results of mathematical modeling of the electrode effect with experimental data,” Izv. Yuzhn. Fed. Univ. Tekh. Nauki, No. 4, 72–80 (2013).

    Google Scholar 

  15. A. S. Boldyrev, K. A. Boldyreva, G. V. Kupovykh, et al., “On the problem of monitoring of the electric field of the atmosphere according to ground-based observation data,” Sovrem. Probl. Nauki Obraz., No. 6, 875 (2013).

    Google Scholar 

  16. E. M. Dmitriev and V. Filippov, “Analytical solution of the problem of classical electrode effect in the atmospheric surface layer,” Geofiz. Issled. 11 (4), 53–59 (2010).

    Google Scholar 

  17. E. M. Dmitriev, “Asymptotic solution of the problem of surface electrode effect under weak turbulent mixing,” Geofiz. Issled. 12 (4), 52–58 (2011).

    Google Scholar 

  18. A. V. Kalinin, E. E. Grigor’ev, A. A. Zhidkov, and A. M. Terent’ev, “Classification and properties of solutions for the system of equations of classical electrode effect theory,” Radiophys. Quantum Electron. 56 (11–12), 747–768 (2014).

    Article  Google Scholar 

  19. A. V. Kalinin, N. N. Slyunyaev, E. A. Mareev, and A. A. Zhidkov, “Stationary and nonstationary models of the global electric circuit: Well-posedness, analytical relations, and numerical implementation,” Izv., Atmos. Ocean. Phys. 50 (3), 314–322 (2014).

    Article  Google Scholar 

  20. O. V. Mareeva, E. A. Mareev, A. V. Kalinin, and A. A. Zhidkov, “On the contribution of a convective generator into the global electric circuit,” Soln.-Zemnaya Fiz., No. 21, 115–118 (2012).

    Google Scholar 

  21. N. N. Slyunyaev, A. V. Kalinin, E. A. Mareev, and A. A. Zhidkov, “Calculation of the ionospheric potential in steady-state and non-steady-state models of the global electric circuit,” in Proceedings of the 15th Conference of Atmospheric Electricity (ICAE-2014), Oklahoma: University of Oklahoma, USA. 2014, P-10-11.

    Google Scholar 

  22. V. N. Morozov, “Influence of thunderstorm cloud discharges on the global electric circuit,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 569, 249–257 (2013).

    Google Scholar 

  23. V. N. Morozov, “Distribution of the electric field generated by ionospheric generator in lower layers of the atmosphere,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 565, 205–215 (2012).

    Google Scholar 

  24. V. V. Denisenko and E. V. Pomozov, “Penetration of electric field from the surface layer to the ionosphere,” Soln.-Zemnaya Fiz., No. 16, 70–75 (2010).

    Google Scholar 

  25. V. V. Denisenko, M. Ampferer, E. V. Pomozov, et al., “On electric field penetration from ground into the ionosphere,” J. Atmos. Sol.-Terr. Phys. 102, 341–353 (2013).

    Article  Google Scholar 

  26. S. Pulinets and D. Davidenko, “Ionospheric precursors of earthquakes and global electric circuit,” Adv. Space Res. 53 (5), 709–723 (2014).

    Article  Google Scholar 

  27. A. A. Namgaladze, “Earthquakes and global electrical circuit,” Russ. J. Phys. Chem. B 7 (5), 589–593 (2013).

    Article  Google Scholar 

  28. N. N. Slyunyaev, E. A. Mareev, A. V. Kalinin, and A. A. Zhidkov, “Influence of large-scale conductivity inhomogeneities in the atmosphere on the global electric circuit,” J. Atmos. Sci. 71, 4382–4396 (2014).

    Article  Google Scholar 

  29. E. A. Mareev and E. M. Volodin, “Variation of the global electric circuit and ionospheric potential in a general circulation model,” Geophys. Res. Lett. 41 (24), 9009–9016 (2014).

    Article  Google Scholar 

  30. A. A. Evtushenko, N. V. Il’in, and F. A. Kuterin, “On the existence of a global electric circuit in the atmosphere of Mars,” Moscow Univ. Phys. Bull. 70 (1), 57–61 (2015).

    Article  Google Scholar 

  31. N. E. Veremei, Yu. A. Dovgalyuk, M. A. Zatevakhin, et al., “Study of the evolution of the electric structure of convective clouds according to data of a nonstationary three-dimensional numerical model,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 47–48.

    Google Scholar 

  32. B. A. Ashabokov, A. V. Shapovalov, D. D. Kuliev, et al., “Numerical simulation of thermodynamic, microstructural, and electric characteristics of convective clouds at the growth and mature stages,” Radiophys. Quantum Electron. 56 (11–12), 811–817 (2013).

    Google Scholar 

  33. B. A. Ashabokov, D. D. Kuliev, K. A. Prodan, et al., “Some results of a numerical study of the formation of thermodynamic, microstructure, and electrical characteristics of convective clouds,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 31–32.

    Google Scholar 

  34. S. O. Dementyeva, N. V. Ilin, and E. A. Mareev, “Calculation of the lightning potential index and electric field in numerical weather prediction models,” Izv., Atmos. Ocean. Phys. 51 (2), 186–192 (2015).

    Article  Google Scholar 

  35. S. O. Dementyeva and N. V. Ilin, “Calculation of Lightning Potential Index (LPI) for different microphysics parameterizations based on WRF model and its comparative analysis with electrical parameters,” in Proceedings of the 15th International Conference on Atmospheric Electricity (ICAE-2014), University of Oklahoma, USA, 2014, pp. 04–05.

    Google Scholar 

  36. S. O. Dementyeva, N. V. Ilin, and E. A. Mareev, “Calculation of electric parameters of a lightning cloud in high-resolution numerical models,” in Proceedings of the XVIII All-Russian School-Conference of Young Scientists. Atmospheric Composition. Atmospheric Electricity. Climatic Processes, (Schmidt Institute of Physics of the Earth, Borok, 2014), Vol. 1, pp. 52–53.

    Google Scholar 

  37. S. O. Dementyeva, N. V. Ilin, and E. A. Mareev, “Prediction of lightning activity based on direct electric field calculations,” in Proceedings of the International Symposium on Topical Problems of Nonlinear Wave Physics (NWP-2014) (Institute of Applied Physics, Nizhny Novgorod, 2014), Vol. 1, pp. 158–159.

    Google Scholar 

  38. S. S. Davydenko, E. A. Mareev, and A. S. Sergeev, “Model of the electromagnetic response of the atmosphere to a lightning discharge,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 64–67.

    Google Scholar 

  39. S. S. Davydenko, S. A. Savikhin, A. S. Sergeev, and S. A. Zolotov, “Electromagnetic response of the inhomogeneous anisotropic atmosphere to a single lightning discharge,” in Proceedings of the International Symposium on Topical Problems of Nonlinear Wave Physics (NWP-2014) (Institute of Applied Physics, Nizhny Novgorod, 2014), Vol. 1, pp. 149–150.

    Google Scholar 

  40. S. S. Davydenko, S. A. Savikhin, A. S. Sergeev, and S. A. Zolotov, “3D modeling atmospheric electric and current caused by a lightning discharge,” in Proceedings of the 15th International Conference on Atmospheric Electricity (ICAE-2014), University of Oklahoma, USA, 2014, pp. 08–25.

    Google Scholar 

  41. D. S. Schmidt, R. A. Schmidt, and J. D. Dent, “Electrostatic force on saltating sand,” J. Geophys. Res. 103 (D8), 8997–9001 (1998).

    Article  Google Scholar 

  42. V. M. Kopeikin, G. I. Gorchakov, A. V. Karpov, and A. B. Kolesnikova, “Analysis of the electric currents of saltation,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 139–141.

    Google Scholar 

  43. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, et al., “The specific charge of saltation sand particles in arid territories,” Dokl. Earth Sci. 456 (2), 700–704 (2014).

    Article  Google Scholar 

  44. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, et al., “Dust plasma of wind-sand flow,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 57–58.

    Google Scholar 

  45. V. S. Syssoev, A. Yu. Kostinskiy, L. M. Makalskiy, et al., “A study of parameters of the counterpropagating leader and its influence on the lightning protection of objects using large-scale laboratory modeling,” Radiophys. Quantum Electron. 56 (11–12), 839–845 (2013).

    Google Scholar 

  46. V. S. Syssoev, A. Yu. Kostinskiy, V. Yu. Klimashev, et al., “The electric structure of a unipolar cloud,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 238–240.

    Google Scholar 

  47. N. A. Bogatov, V. S. Syssoev, D. I. Sukharevsky, et al., “Microwave diagnostics for investigation of long spark and artificial charged aerosol cloud,” in Proceedings of the 15th International Conference on Atmospheric Electricity (ICAE-2014), University of Oklahoma, USA, 2014, O-03-09.

    Google Scholar 

  48. M. G. Andreev, N. A. Bogatov, A. Yu. Kostinsky, et al., “First detailed observations of discharges within the artificial charged aerosol cloud,” in Proceedings of the 15th International Conference on Atmospheric Electricity (ICAE-2014), University of Oklahoma, USA, 2014, pp. 03–09.

    Google Scholar 

  49. M. G. Andreev, M. U. Bulatov, A. Yu. Kostinsky, et al., “Return stroke initiated by the contact between a downward negative leader from the aerosol cloud and upward positive leader from the grounded plane,” in Proceedings of the 15th International Conference on Atmospheric Electricity (ICAE-2014), University of Oklahoma, USA, 2014, pp. 03–07.

    Google Scholar 

  50. N. A. Popov, “Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure,” Plasma Phys. Rep. 39 (5), 420–424 (2013).

    Article  Google Scholar 

  51. G. V. Naidis, “Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects,” Appl. Phys. Lett. 98 (14), 141501 (2011).

    Article  Google Scholar 

  52. E. M. Bazelyan, Y. P. Raizer, and N. L. Aleksandrov, “The effect of corona space charge produced at ground level on lightning attachment to tall structures,” in Proceedings of the 31st International Conference on Lightning Protection (ICLP 2012) (Institute of Electrical and Electronics Engineers, Vienna, 2012), Vol. 1, pp. 89–93.

    Google Scholar 

  53. E. M. Bazelyan, “The objects of oil-gas industry affected by lighting from different sides,” Territ. Neftegaz 9, 20–21 (2012).

    Google Scholar 

  54. T. V. Sukhodolov, S. P. Smyshlyaev, and E. A. Mareev, “Modeling the global aspects of lightning activity for the investigation of feedbacks with changes in the climate and gaseous composition of the atmosphere,” in Proceedings of the VII All-Russian Conference on Atmospheric Electricity (St. Petersburg, 2012), Vol. 1, pp. 236–238 [in Russian].

    Google Scholar 

  55. L. I. Kolomeets and S. P. Smyshlyaev, “Modeling the feedbacks between lightning activity, atmospheric composition, and weather and climate changes,” in Proceedings of the XVIII All-Russian School-Conference of Young Scientists. Atmospheric Composition. Atmospheric Electricity. Climatic Processes, (IFZ RAN, Borok, 2014), Vol. 1, pp. 56–57 [In Russian].

    Google Scholar 

  56. S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, “Simulating indirect effects that thunderstorm activity has on atmospheric temperature,” Izv., Atmos. Ocean. Phys. 49 (5), 504–518 (2013).

    Article  Google Scholar 

  57. A. Kh. Adzhiev, V. N. Stasenko, and V. O. Tapaskhanov, “Lightning detection system in the North Caucasus,” Russ. Meteorol. Hydrol. 38 (1), 1–5 (2013).

    Article  Google Scholar 

  58. I. I. Kononov, A. V. Snegurov, V. S. Snegurov, and I. E. Yusupov, “Accuracy characteristics of a differential distance system for thunderstorm positioning,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 575, 131–141 (2014).

    Google Scholar 

  59. F. A. Kuterin, Yu. V. Shlyugaev, and A. A. Bulatov, “Organization of the database of multiplaced lightning detection for monitoring of storm-danger,” in Proceedings of the IV International Conference on Lightning Protection (Politechnical Universtiy, St. Petersburg, 2014), pp. 278–282.

    Google Scholar 

  60. A. V. Snegurov, “History of the construction of an experimental thunderstorm-finding network,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 562, 190–200 (2010).

    Google Scholar 

  61. http://alwes.ru.

  62. http://www.grozy.ru.

  63. http://www.lightnings.ru.

  64. F. A. Kuterin, A. A. Bulatov, and Y. V. Shlugaev, “The development of the lightning detection network based on Boltek StormTracker hardware,” in Proceedings of the 15th International Conference on Atmospheric Electricity (ICAE-2014), University of Oklahoma, USA, 2014, P-12-17.

  65. I. I. Kononov, I. E. Yusupov, and N. V. Kandaratskov, “Analysis of one-point methods for lightning-discharge passive location,” Radiophys. Quantum Electron. 56 (11–12), 788–800 (2014).

    Article  Google Scholar 

  66. I. I. Kononov, V. I. Ivanov, D. M. Krutoi, and I. E. Yusupov, “Systematic errors in thunderstorm source positioning,” in Proceedings of the XVII International Conference “Radiolokatsiya, Navigation, Communication” (Voronezhskii gos. univ., Voronezh, 2011), pp. 2127–2139 [in Russian].

    Google Scholar 

  67. M. V. Bukharov, “Satellite diagnosis of thunderstorm probability,” Russ. Meteorol. Hydrol. 38 (8), 515–521 (2013).

    Article  Google Scholar 

  68. V. A. Mullayarov, A. A. Toropov, V. I. Kozlov, and R. R. Karimov, “Patterns of spatial distribution of positive thunderstorm discharges in Eastern Siberia,” Russ. Meteorol. Hydrol. 34 (6), 364–370 (2009).

    Article  Google Scholar 

  69. V. I. Kozlov, V. A. Mullayarov, Yu. M. Grigorev, and L. D. Tarabukina, “Parameters of thunderstorm activity and lightning discharges in central Yakutia from 2009 to 2012,” Izv., Atmos. Ocean. Phys. 50 (3), 323–329 (2014).

    Article  Google Scholar 

  70. S. N. Shabaganova, R. R. Karimov, V. I. Kozlov, and V. A. Mullayarov, “Characteristics of storm cells from observations in Yakutia,” Russ. Meteorol. Hydrol. 37 (12), 746–751 (2012).

    Article  Google Scholar 

  71. I. M. Kutsyk, L. P. Babich, and E. N. Donskoi, “Selfsustained relativistic-runaway-electron avalanches in the transverse field of lightning leader as sources of terrestrial gamma-ray flashes,” JETP Lett. 94 (8), 606–609 (2011).

    Article  Google Scholar 

  72. N. N. Veden’kin, A. V. Dmitriev, G. K. Garipov, et al., “Atmospheric ultraviolet light and comparison of its intensity with the variation of electron flux with energies higher than 70 KeV in satellite orbit (according to Universitetskii–Tatiana satellite data),” Moscow Univ. Phys. Bull 64 (3), 450–454 (2009).

    Article  Google Scholar 

  73. G. K. Garipov, B. A. Khrenov, P. A. Klimov, et al., “Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite,” J. Geophys. Res.: Atmos. 118 (2), 370–379 (2013).

    Google Scholar 

  74. P. N. Veden’kin, G. K. Garipov, P. A. Klimov, et al., “Atmospheric ultraviolet and red-infrared flashes from Universitetsky-Tatiana-2 satellite data,” J. Exp. Theor. Phys. 113 (5), 781–790 (2011).

    Article  Google Scholar 

  75. K. V. Khodataev, “Gas-discharge processes in the stratosphere and mesosphere during a thunderstorm,” Inzh. Fiz. 2, 6–19 (2012).

    Google Scholar 

  76. E. A. Mareev and S. A. Yashunin, “On conditions of initiation of electric discharges in the middle atmosphere,” Izv., Atmos. Ocean. Phys. 46 (1), 69–76 (2010).

    Article  Google Scholar 

  77. A. A. Evtushenko and F. A. Kuterin, “One-dimensional self-consistent model of the sprite/halo influence on the mesosphere chemistry,” Radiophys. Quantum Electron. 56 (11–12), 853–871 (2013).

    Google Scholar 

  78. A. A. Evtushenko, F. A. Kuterin, and E. A. Mareev, “Peculiarities of the disturbance in the mesosphere composition and optical emissions caused by high-altitude discharges,” Izv., Atmos. Ocean. Phys. 49 (5), 530–540 (2013).

    Article  Google Scholar 

  79. A. A. Evtushenko, F. A. Kuterin, and E. A. Mareev, “A model of sprite influence on the chemical balance of mesosphere,” J. Atmos. Sol.-Terr. Phys. 102, 298–310 (2013).

    Article  Google Scholar 

  80. A. V. Gurevich, V. P. Antonova, A. P. Chubenko, et al., “Correlation of radio and gamma emissions in lightning initiation,” Phys. Rev. Lett. 111 (16), 165001 (2013).

    Article  Google Scholar 

  81. A. V. Gurevich and A. N. Karashtin, “Runaway breakdown and hydrometeors in lightning initiation,” Phys. Rev. Lett. 110 (18), 185005 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mareev.

Additional information

Original Russian Text © E.A. Mareev, V.N. Stasenko, A.A. Bulatov, S.O. Dement’eva, A.A. Evtushenko, N.V. Il’in, F.A. Kuterin, N.N. Slyunyaev, M.V. Shatalina, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 2, pp. 175–186.

Russian National Report/Meteorology and Atmospheric Sciences. 2011–2014/Eds.: I.I. Mokhov, A.A. Krivolutsky. National Geophysical Committee RAS. Moscow: Max Press, 2015. 270 p.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareev, E.A., Stasenko, V.N., Bulatov, A.A. et al. Russian studies of atmospheric electricity in 2011–2014. Izv. Atmos. Ocean. Phys. 52, 154–164 (2016). https://doi.org/10.1134/S0001433816020080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816020080

Keywords

Navigation