Skip to main content
Log in

Study of interaction of ELF–ULF range (0.1–200 Hz) electromagnetic waves with the earth’s crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth’s crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth’s crust and upper mantle. According to the results of these studies clarifying the parameters of “normal” (standard) geoelectric section of the lithosphere to a depth of 60–70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF–LLF waves (0.1–200 Hz) in an “Earth–Ionosphere” waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF–ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akindinov, V.V., Naryshkin, V.I., and Ryazantsev, A.M., Electromagnetic fields in seawater (a review), Radiotekh. Elektron. (Moscow), 1976, vol. 21, no. 5, pp. 913–944.

    Google Scholar 

  • Bannister, P.R., The determination of representative ionospheric conductivity parameters for elf propagation in the Earth–ionosphere waveguide, Radio Sci., 1985, vol. 20, pp. 977–984.

    Article  Google Scholar 

  • Barannik, M.B., Danilin, A.N., Efimov, B.V., Kolobov, V.V., Prokopchuk, P.I., Selivanov, V.N., Shevtsov, A.N., Kopytenko, Yu.A., and Zhamaletdinov, A.A., A Set-up converter and energy transfer system of an “Energy-2” generator for electromagnetic sounding and monitoring of zones of earthquake sources, Seism. Instrum., 2009, vol. 45, no. 1, pp. 119–128.

    Article  Google Scholar 

  • Berdichevskii, M.N. and Dmitriev, V.I., Magnitotelluricheskoe zondirovanie gorizontal’no odnorodnykh sred (Magnetotelluric Sounding of Horizontal Homogeneous Media), Moscow: Nedra, 1992, pp. 161–193.

    Google Scholar 

  • Bernstein, S.L., Burrows, M., Evans, J.E., et al., Longrange communication at extremely low frequencies, Proc. IEEE, 1974, vol. 62, no. 3, pp. 292–312.

    Article  Google Scholar 

  • Blohm, E.K., Worzyk, P., and Scriba, H., Geoelectrical deep soundings in Southern Africa using the Cabora Bassa power line, J. Geophys., 1977, no. 43, pp. 665–679.

    Google Scholar 

  • Boerner, D.E., Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results, Surv. Geophys., 1992, vol. 13, no. 4, pp. 435–488.

    Article  Google Scholar 

  • Boerner, D.E. and West, G.F., A generalized representation of electromagnetic fields in a layered Earth, Geophys. J. RAS, DGG, EG, 1989, vol. 97, no. 3, pp. 529–547.

    Google Scholar 

  • Cantwell, T., Nelson, P., Webb, J., and Orange, A.S., Deep resistivity measurements in the Pacific North-West, J. Geophys. Res., 1965, vol. 70, no. 8, pp. 1931–1937.

    Article  Google Scholar 

  • ermák, V. and Laštoviková, M., Temperature profiles in the Earth of importance to deep electrical conductivity models, Pageoph., 1987, vol. 125, pp. 255–284.

    Article  Google Scholar 

  • Chao, L., Long-Gen, Z., and Yong-Pin, L., A closed-form solution for ELF radiated fields of line current antenna in Earth–Ionosphere waveguide, Abstr. of the 5th Int. Conf. WiCom'09, September 24–26, 2009, Beijing pp. 1–4. doi 10.1109/WICOM.2009.5301548

    Google Scholar 

  • Chave, A.D., Numerical integration of related Hankel transforms by quadrature and continued fraction expansion, Geophysics, 1983, no. 48, pp. 1671–1686.

    Article  Google Scholar 

  • Engelberg, S., Random Signals and Noise: A Mathematical Introduction New York: CRC Press, 2007.

    Google Scholar 

  • Fainberg, E.B., Kuvshinov, A.V., and Singer, B.Sh., Electromagnetic induction in a spherical Earth with nonuniform ocean and continents in electric contact with the underlying medium: I. Theory, method and example, Geophys. J. Int., 1990, vol. 102, pp. 273–281.

    Article  Google Scholar 

  • Fel’dman, I.S. and Zhamaletdinov, A.A., Fluid and heat model of electrical conductivity of the lithosphere according to laboratory data, in Kompleksnye geologo–geofizicheskie modeli drevnikh shchitov: Trudy Vserossiiskoi (s mezhdunarodnym uchastiem) konferentsii (Integrated Geological and Geophysical Models of Ancient Shields: Proceedings of the All-Russian Conference with International Participation), Apatity: Geol. Inst. KNTs RAN, 2009, pp. 100–107.

    Google Scholar 

  • Galejs, J., Terrestrial Propagation of Long Electromagnetic Waves, New York: Pergamon, 1972.

    Google Scholar 

  • Gasanenko, L.B., Normal field of the vertical harmonic low-frequency magnetic dipole, Uch. Zap. Leningr. Gos. Univ. im. A.A. Zhdanova, Ser. Fiz. Geol. Nauk, 1958, vol. 249, no. 10, pp. 15–36.

    Google Scholar 

  • Glaznev, V.N., Kompleksnye geofizicheskie modeli litosfery Fennoskandii (Integrated Geophysical Models of the Lithosphere Fennoscandia), Apatity: KaeM, 2003.

    Google Scholar 

  • Hjelt, S.E., Aspects of the geoelectric model of the Baltic shield, Precambrian Res., 1987, vol. 35, pp. 181–184.

    Article  Google Scholar 

  • Jones, A.G., On a type classification of lower crustal layers under Precambrian regions, J. Geophys., 1981, vol. 49, pp. 226–233.

    Google Scholar 

  • Jones, A.G., Observations of the electrical asthenosphere beneath Scandinavia, Tectonophysics, 1982, no. 90, pp. 37–55.

    Article  Google Scholar 

  • Kaikkonen, P., Moisio, K., and Heeremans, M., Thermome chanical lithospheric structure of the Central Fennoscandian shield, Phys. Earth Planet. Int., 2000, no. 119, pp. 209–235.

    Article  Google Scholar 

  • Khintchine, A., Korrelationstheorie der stationären stochastischen Prozesse (Correlation theory of stationary stochastic processes), Math. Ann., 1934, vol. 109, no. 1, pp. 604–615.

    Article  Google Scholar 

  • Klabukov, B.N., Background and anomalous electrical conductivity of the crust of Karelia, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 328–336.

    Google Scholar 

  • Kolobov, V.V., Barannik, M.B., and Zhamaletdinov, A.A., Generatorno-izmeritel’nyi kompleks “Energiya” dlya elektromagnitnogo zondirovaniya litosfery i monitoringa seismoaktivnykh zon (Generator and Measuring System “Energiya” for Electromagnetic Sounding of the Lithosphere and Monitoring of Seismically Active Zones), St. Petersburg: SOLO, 2013.

    Google Scholar 

  • Korepanov, V.Ye., Electromagnetic sensors for microsatellites, Sensors: Proc. IEEE, 2002, pp. 1718–1722.

    Chapter  Google Scholar 

  • Korja, T., Electrical Conductivity of the Lithosphere, Oulu: Dept. of Geophys. Univ. of Oulu, 1990.

    Google Scholar 

  • Korja, T., Electrical conductivity distribution of the lithosphere in the Central Fennoscandian shield, Precambrian Res., 1993, vol. 64, pp. 85–108.

    Article  Google Scholar 

  • Korja, T., Engels, M., Zhamaletdinov, A.A., Kovtun, A.A., Palshin, N.A., Smirnov, M.Yu., Tokarev, A.D., Asming, V.E., Vanyan, L.L., Vardaniants, I.L., et al., Crustal conductivity in Fennoscandia: A compilation of a database on crustal conductivity in Fennoscandian shield, Earth, Planets Space, 2002, no. 54, pp. 535–558.

    Article  Google Scholar 

  • Kovtun, A.A., Ispol’zovanie estestvennogo elektromagnitnogo polya pri izuchenii elektroprovodnosti Zemli (The Use of the Natural Electromagnetic Field in Studies of the Earth’s Electrical Conductivity), Leningrad: LGU, 1980.

    Google Scholar 

  • Kovtun, A.A., Stroenie kory i verkhnei mantii na severo–zapade Vostochno-Evropeiskoi platformy po dannym magnitotelluricheskikh zondirovanii (The Structure of Crust and Upper Mantle in the Northeast of the East European Platform from Magnetotelluric Sounding Data), Leningrad: LGU, 1989.

    Google Scholar 

  • Kraev, A.P., Semenov, A.S., and Tarkhov, A.G., Sverkhglubokoe elektrozondirovanie, Razved. Nedr, 1947, no. 3, pp. 40–41.

    Google Scholar 

  • Lazareva, N.V., The use of magnetotelluric methods in the Pechenga area, in Voprosy razvedochnoi geofiziki (Issues in Exploration Geophysics), Moscow: Nedra, 1964, pp. 105–107.

    Google Scholar 

  • Lazareva, N.V., Nekotorye osobennosti povedeniya estestvennogo elektromagnitnogo polya na yuzhnom sklone Baltiiskogo shchita (Some Specific Features of the Behavior of the Natural Electromagnetic Field on the Southern Slope of the Baltic Shield), Leningrad: Nedra, 1967.

    Google Scholar 

  • Leontovich, M.A., Approximate boundary conditions for the electromagnetic field on the surface of well conducting bodies, in Issledovaniya po rasprostraneniyu radiovoln (Studies on Radio Wave Propagation), Leningrad: Fizmatgiz, 1948, pp. 5–12.

    Google Scholar 

  • Maeda, K. and Matsumoto, H., Conductivity of the ionosphere and current system, Rep. Ionos. Space Res. Jpn., 1962, no. 16, pp. 1–26.

    Google Scholar 

  • Makarov, G.I., Novikov, V.V., and Rybachek, S.T., Rasprostranenie radiovoln v volnovodnom kanale “Zemlya-ionosfera” i v ionosfere (Radio Wave Propagation in the Earth–Ionosphere Waveguide Channel and in the Ionosphere), Moscow: Nauka, 1993.

    Google Scholar 

  • Moisio, K. and Kaikkonen, P., Three-dimensional numerical thermal and rheological modeling in the central Fennoscandian shield, J. Geodyn., 2006, vol. 42, pp. 95–114.

    Article  Google Scholar 

  • Pajunpaa, K., Magnetometer array studies in Finland: Determination of single station transfer function, J. Geophys., 1984, vol. 55, pp. 153–160.

    Google Scholar 

  • Parkhomenko, E.I. and Bondarenko, A.T., Elektroprovodnost’ gornykh porod pri vysokikh davleniyakh i temperaturakh (Electrical Conductivity of Rocks at High Pressures and Temperatures), Moscow: Nauka, 1972.

    Google Scholar 

  • Pavlenkova, N.I., The structure of the Baltic shield lithosphere according to deep seismic sounding data, in Struktura i dinamika litosfery Vostochnoi Evropy (The Structure and Dynamics of the Lithosphere of East Europe), Moscow: Geokart, GEOS, 2006, pp. 33–58.

    Google Scholar 

  • Paznukhov, V.E., Budanov, O.V., Rokhman, A.G., and Aristov, Yu.V., Priemno-izmeritel’nyi kompleks SNCh diapazona s UKV retranslyatorom, Radiofiz. Radioastron., 2010, vol. 15, no. 1, pp. 39–49.

    Google Scholar 

  • Porokhova, L.N. and Kharlamov, M.M., The solution of the one-dimensional inverse problem for induction soundings by an efficient linearization technique, Phys. Earth Planet. Inter., 1990, vol. 60, pp. 68–79.

    Article  Google Scholar 

  • Pozhilenko, V.I., Gavrilenko, B.V., Zhirov, D.V., and Zhabin, S.V., Geologiya rudnykh raionov Murmanskoi oblasti (Geology of Ore Districts of the Murmansk Region), Apatity: MPR RF, 2002.

    Google Scholar 

  • Rasmussen, T., Zhang, P., and Pedersen, L., Preliminary results from magnetotelluric measurements along the Fennolora profile, in The Development of the Deep Geoelectric Model of the Baltic Shield, Oulu: Dept. of Geophys., Univ. of Oulu, 1984, pp. 307–327.

    Google Scholar 

  • Rodkin, M.F., Rol’ glubinnogo flyuidnogo rezhima v geodinamike i seismotektonike (The Role of Deep Fluid Regime in the Geodynamics and Seismotectonics), Moscow: Natsional’nyi geofizicheskii komitet, 1993.

    Google Scholar 

  • Rokityanskii, I.I., Zybin, K.Yu., Rokityanskaya, D.A., and Shchepetnev, R.V., Magnetotelluric study of the array at Borok, Lovozero, and Petropavlovsk-Kamchatskii geophysical stations, in Elektromagnitnye zondirovaniya i magnitotelluricheskie metody razvedki (Electromagnetic Sounding and Magnetotelluric Methods of Exploration), Leningrad: LGU, 1963, pp. 124–130.

    Google Scholar 

  • Rokityanskii, I.I., Issledovanie anomalii elektroprovodnosti metodom magnitovariatsionnogo profilirovaniya (Study of the Anomaly in Electrical Conductivity by the Method of Magnetic Variation Profiling), Kiev: Naukova dumka, 1975.

    Google Scholar 

  • Rokityanskii, I.I., Induktsionnye zondirovaniya Zemli (Induction Sounding of the Earth), Kiev: Naukova dumka, 1981.

    Google Scholar 

  • Sapuzhak, Ya.S. and Enenshtein, B.S., The use of electric currents of power transmission lines for electromagnetic sounding of the Earth, Dokl. Akad. Nauk SSSR, 1980, vol. 252, no. 4, pp. 838–841.

    Google Scholar 

  • Saraev, A.K. and Kostin, P.M., The structure of the electromagnetic field of an ELF radio unit, Vopr. Geofiz., 1998, no. 35, pp. 117–135.

    Google Scholar 

  • Semenov, A.S., The nature of electrical conductivity of the ancient crystalline basement, Vestn. Leningr. Univ., 1970, no. 12, pp. 19–26.

    Google Scholar 

  • Semenov, V.Yu., Results of crust and mantle soundings in Central and Northern Europe in the 21st century (review), Acta Geophys., 2015, vol. 63, no. 1.

    Google Scholar 

  • Sharov, N.V. and Mitrofanov, F.P., Velocity heterogeneities in the lithosphere of the Fennoscandian (Baltic) shield, Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 64–67.

    Article  Google Scholar 

  • Shevtsov, A.N., The inverse problem on the example of CSAMT sounding in Central Finland, in Electromagnetic Induction in the Earth: Abstracts of the 14th Workshop in Sinaia (Romania), 1998, p. 82.

    Google Scholar 

  • Shevtsov, A.N., The method of frequency sounding for electrical conductivity of the upper crust of the Baltic shield, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State University, 2001.

    Google Scholar 

  • Shevtsov, A.N., Direct and inverse problems of frequency electromagnetic sounding with industrial power transmission lines, in Teoriya i metodika glubinnykh elektromagnitnykh zondirovanii na kristallicheskikh shchitakh (Theory and Methodology of Deep Electromagnetic Sounding on Crystalline Shields), Apatity: KNTs RAN, 2006, pp. 171–181.

    Google Scholar 

  • Smith, O., Spectral Audio Signal Processing, W3K Publ., 2011.

    Google Scholar 

  • Spice, B.R., Depth of investigation in electromagnetic sounding methods, Geophysics, 1989, vol. 54, no. 7, pp. 872–888.

    Article  Google Scholar 

  • The Magnetotelluric Method: Theory and Practice, Chave, A.D. and Jones, A.G., Eds., New York: Cambridge Univ. Press, 2012.

  • Van’yan, L.L., Berdichevskii, M.N., Vasin, N.D., et al., Normal geoelectric section, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1980, no. 2, pp. 73–76.

    Google Scholar 

  • Van’yan, L.L., Models of deep electrical conductivity: A review, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1981, no. 5, pp. 57–66.

    Google Scholar 

  • Van’yan, L.L., On the role of vertical and horizontal skin effects in frequency sounding, Izv., Phys. Solid Earth, 1996, vol. 32, no. 1, pp. 40–42.

    Google Scholar 

  • Van’yan, L.L., Elektromagnitnye zondirovaniya (Electromagnetic Soundings), Moscow: Nauchnyi mir, 1997.

    Google Scholar 

  • Velikhov, Ye.P. Zhamaletdinov, A.A., et al., Electromagnetic studies on the Kola Peninsula and in Northern Finland by means of a powerful controlled source, J. Geodyn., 1986, vol. 5, pp. 237–256.

    Article  Google Scholar 

  • Velikhov, E.P., Zhamaletdinov, A.A., Sobchakov, L.A., Veshev, A.V., Saraev, A.K., Tokarev, A.D., Shevtsov, A.N., Vasil’ev, A.V., Sonnikov, A.G., and Yakovlev, A.V., Experience of frequency electromagnetic sounding of the Earth’s crust with application of a powerful VLF antenna, Dokl. Ross. Akad. Nauk, 1994, vol. 338, no. 1, pp. 106–109.

    Google Scholar 

  • Veshev, A.V., Elektroprofilirovanie na postoyannom i peremennom toke (Electrical Profiling on Direct and Alternate Currents), Leningrad: Nedra, 1980.

    Google Scholar 

  • Vladimirov, N.P. and Dmitriev, V.I., Geoelectric section of the Earth’s crust and upper mantle of the Russian platform according to magnetotelluric sounding data, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1972, no. 6, pp. 100–103.

    Google Scholar 

  • Vzaimodeistvie elektromagnitnykh polei kontroliruemykh istochnikov SNCh-diapazona s ionosferoi i zemnoi koroi (Interaction of Electromagnetic Fields of Controlled VLF Sources with the Ionosphere and the Earth’s Crust), Velikhov, E.P. and Voitekhovskii, Yu.L., Eds., Apatity: Geol. inst. KNTs RAN, 2014.

  • Wait, J.R. and Spies, K.P., Characteristics of the Earth–ionosphere waveguide for VLF radio waves, NBS Tech., 1964, Note 300.

    Google Scholar 

  • Weidelt, P., Electromagnetic induction in 3D structures, J. Geophys., 1975, vol. 41, pp. 85–109.

    Google Scholar 

  • Wiener, N., Generalized harmonic analysis, Acta Math., 1930, vol. 55, pp. 117–258.

    Article  Google Scholar 

  • Yardley, B.W.D. and Valley, J.W., The petrologic case for a dry lower crust, J. Geophys. Res. B6, 1997, vol. 12, no. 173 (12), p. 185.

    Google Scholar 

  • Zaborovskii, A.I., Elektrorazvedka (Electric Exploration), Moscow: GNTINGTPL, 1963.

    Google Scholar 

  • Zhamaletdinov, A.A., Electron-conducting structures of the North–West of the Kola peninsula and their influence on results of the deep soundings of the Earth crust, Geod. Geophys. Veroff., 1980, vol. 111, no. 47, pp. 207–223.

    Google Scholar 

  • Zhamaletdinov, A.A., Kovalevskii, V.Ya., Pavlovskii, V.I., Tanachev, G.S., and Tokarev, A.D., Deep electrical sounding from the Volgograd–Donbass power line of 800 kV direct current, Dokl. Akad. Nauk SSSR, 1982, vol. 265, no. 5, pp. 1101–1105.

    Google Scholar 

  • Zhamaletdinov, A.A., Model’ elektroprovodnosti litosfery po rezul’tatam issledovanii s kontroliruemymi istochnikami polya (Baltiiskii shchit, Russkaya platforma) (The Model of Electrical Conductivity from the Results of Investigations with Controlled Field Sources (the Baltic Shield, the Russian Platform)), Leningrad: Nauka, 1990.

    Google Scholar 

  • Zhamaletdinov, A.A., Graphite in the Earth’s crust and electrical conductivity anomalies, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 285–294.

    Google Scholar 

  • Zhamaletdinov, A.A., The model of electrical conductivity of the continental lithosphere, Vopr. Geofiz., 2005, no. 38, pp. 115–129.

    Google Scholar 

  • Zhamaletdinov, A.A., Shevtsov, A.N., Korotkova, T.G., Kopytenko, Yu.A., Ismagilov, V.S., Petrishchev, M.S., Efimov, B.V., Barannik, M.B., Kolobov, V.V., Prokopchuk, P.I., Smirnov, M.Yu., Vagin, S.A., Pertel, M.I., Tereshchenko, E.D., Vasil’ev, A.N., Grigor’ev, V.F., Gokhberg, M.B., Trofimchik, V.I., Yampolsky, Yu.M., Koloskov, A.V., Fedorov, A.V., and Korja, T., Deep electromagnetic sounding of the lithosphere in the Eastern Baltic (Fennoscandian) shield with high-power controlled sources and industrial power transmission lines (FENICS experiment), Izv., Phys. Solid Earth, 2011, vol. 47, no. 1, pp. 2–22.

    Article  Google Scholar 

  • Zhamaletdinov, A.A., On the fluid nature of intermediate conductive layers in the Earth’s crust: Evidence from electromagnetic sounding and superdeep well logging, Izv., Phys. Solid Earth, 2011, vol. 47, no. 2, pp. 127–137.

    Article  Google Scholar 

  • Zhamaletdinov, A.A., Teoriya i metodika glubinnykh elektromagnitnykh zondirovanii s moshchnymi kontroliruemymi istochnikami (opyt kriticheskogo analiza) (Theory and Methodology of Deep Electromagnetic Sounding with High-Power Controlled Sources (A Critical Analysis)), St. Petersburg: SOLO, 2012.

    Google Scholar 

  • Zhamaletdinov, A.A., Petrishchev, M.S., Shevtsov, A.N., Kolobov, V.V., Selivanov, V.N., Barannik, M.B., Tereshchenko, E.D., Grigor’ev, V.F., Sergushin, P.A., Kopytenko, E.A., Birulya, M.A., Skorokhodov, A.A., Esipko, O.A., and Damaskin, R.V., Electromagnetic sounding of the Earth’s crust in the region of superdeep boreholes of Yamal–Nenets Autonomous District using the fields of natural and controlled sources, Izv., Phys. Solid Earth, 2013, vol. 49, no. 6, pp. 844–858.

    Article  Google Scholar 

  • Zharkov, V.N., Vnutrennee stroenie Zemli i planet (The Inner Structure of the Earth and Planets), Moscow: Nauka, 1978.

    Google Scholar 

  • Zijl, J.S.V., A deep Schlumberger sounding to investigate the electrical structure of the crust and upper mantle in South Africa, Geophysics, 1969, vol. 34, no. 3, pp. 450–462.

    Article  Google Scholar 

  • Zonge, K.L. and Hughes, L.J., Controlled source audiofrequency magnetotellurics, in Electromagnetic Methods in Applied Geophysics: Theory and Practice, Nabighian, M.N., Ed., Soc. Expl. Geophys., 1991, vol. 2B, pp. 713–809.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhamaletdinov.

Additional information

Original Russian Text © A.A. Zhamaletdinov, A.N. Shevtsov, E.P. Velikhov, A.A. Skorokhodov, V.E. Kolesnikov, T.G. Korotkova, P.A. Ryazantsev, B.V. Efimov, V.V. Kolobov, M.B. Barannik, P.I. Prokopchuk, V.N. Selivanov, Yu.A. Kopytenko, E.A. Kopytenko, V.S. Ismagilov, M.S. Petrishchev, P.A. Sergushin, P.E. Tereshchenko, B.V. Samsonov, M.A. Birulya, M. Yu. Smirnov, T. Korja, Yu.M. Yampolski, A.V. Koloskov, N.A. Baru, S.V. Poljakov, A.V. Shchennikov, G.I. Druzhin, W. Jozwiak, J. Reda, Yu.G. Shchors, 2015, published in Geofizicheskie Protsessy i Biosfera, 2015, Vol. 14, No. 2, pp. 5–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhamaletdinov, A.A., Shevtsov, A.N., Velikhov, E.P. et al. Study of interaction of ELF–ULF range (0.1–200 Hz) electromagnetic waves with the earth’s crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment). Izv. Atmos. Ocean. Phys. 51, 826–857 (2015). https://doi.org/10.1134/S0001433815080083

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815080083

Keywords

Navigation