Skip to main content
Log in

Application of Wavelet Transform to the Raman 2D Peak Components Analysis for Tri- and Tetralayer Graphene

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In this paper we have proposed a wavelet-based approach to study peak components fitting to the Raman 2D band of few layer graphene. As a result of the Continuous Wavelet Transform application peak components of the Raman 2D band are visualized and their number and peak frequencies are determined. It is found that there are four and five peak components of the 2D band for bilayer and trilayer graphene stacked in the Bernal (ABA) configuration respectively. In the case of tetralayer graphene with the rhombohedral (ABC) stacking there are also five peak components of the Raman 2D band. The peak frequencies of detected components are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 104, 176404 (2010). doi 10.1103/PhysRevLett.104.176404

    Article  ADS  Google Scholar 

  2. F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Solid State Commun. 143, 116 (2007). doi 10.1016/j.ssc.2007.03.053

  3. F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006). doi 10.1103/PhysRevB.73.245426

    Article  ADS  Google Scholar 

  4. C. H. Lui, Zh. Li, Zh. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Nano Lett. 11, 164 (2011). doi 10.1021/nl1032827

    Article  ADS  Google Scholar 

  5. M. H. Aoki and H. Amawashi, Solid State Commun. 142, 123 (2007). doi 10.1016/j.ssc.2007.02.013

    Article  ADS  Google Scholar 

  6. C. J. Tabert and E. J. Nicol, Phys. Rev. B 86, 075439 (2012). doi 10.1103/PhysRevB.86.075439

    Article  ADS  Google Scholar 

  7. M. Koshino and E. McCann, Phys. Rev. B 87, 45420 (2013). doi 10.1103/PhysRevB.87.045420

    Article  ADS  Google Scholar 

  8. F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010). doi 10.1103/PhysRevB.82.035409

    Article  ADS  Google Scholar 

  9. C. Bao, W. Yao, E. Wang, C. Chen, J. Avila, M. C. Asensio, et al., Nano Lett. 17, 1564 (2017). doi 10.1021/acs.nanolett.6b04698

    Article  ADS  Google Scholar 

  10. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarusha, Nat. Nanotechnol. 4, 383 (2009). doi 10.1038/nnano.2009.89

  11. W. Bao, L. Jing, Jr. Velasco, Y. Lee, G. Liu, D. Tran, et al., Nat. Phys. 7, 948 (2011). doi 10.1038/nphys2103

    Article  Google Scholar 

  12. A. A. Avetisyan, B. Partoens, and F. M. Peeters, Phys. Rev. B 81, 115432 (2010). doi 10.1103/PhysRevB.81.115432

    Article  ADS  Google Scholar 

  13. T. Khodkov, I. Khrapach, M. F. Craciun, and S. Russo, Nano Lett. 15, 4429 (2015). doi 10.1021/acs.nanolett.5b00772

    Article  ADS  Google Scholar 

  14. A. L. Grushina , D.-K. Ki , M. Koshino, A. A. L. Nicolet, C. Faugeras, E. McCann, et al., Nat. Commun. 6, 6419 (2015). doi 10.1038/ncomms7419

    Article  Google Scholar 

  15. Y. Nam, D-K. Ki, M. Koshino, E. McCann, and A. F. Morpurgo, 2D Mater. 3, 045014 (2016). http://iopscience.iop.org/article/10.1088/2053-1583/3/4/045014.

  16. M. Koshino, K. Sugisawa, and E. McCann, Phys. Rev. B 95, 235311 (2017). doi 10.1103/PhysRevB.95.235311

    Article  ADS  Google Scholar 

  17. K. Myhro, S. Che, Y. Shi, Y. Lee, K. Thilahar, K. Bleich, et al., arXiv:1803.03222 (2018).

  18. L. M. Malard, M. H. D. Guimaraes, D. L. Mafra, M. S. C. Mazzoni, and A. Jorio, Phys. Rev. B 79, 125426 (2009). doi 10.1103/PhysRevB.79.125426

    Article  ADS  Google Scholar 

  19. S. K. Saha, U. V. Waghmare, H. R. Krishnamurthy, and A. K. Sood, Phys. Rev. B 78, 165421 (2008). doi 10.1103/PhysRevB.78.165421

    Article  ADS  Google Scholar 

  20. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. Eklund, Nano Lett. 6, 2767 (2006). doi 10.1021/nl061420a

    Google Scholar 

  21. J. W. Jiang, H. Tang, B. S. Wang, and Z. B. Su, Phys. Rev. B 77, 235421 (2008). doi 10.1103/PhysRevB.77.235421

    Article  ADS  Google Scholar 

  22. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007). doi 10.1103/PhysRevLett.98.166802

    Article  ADS  Google Scholar 

  23. C. H. Lui, E. Cappelluti, Zh. Li, and T. F. Heinz, Phys. Rev. Lett. 110, 185504 (2013). doi 10.1103/PhysRevLett.110.185504

    Article  ADS  Google Scholar 

  24. K. F. Mak, M. Y. Sfeir, J. A. Misewich, and T. F. Heinz, Proc. Natl. Acad. Sci. 107, 14999 (2010). doi 10.1073/pnas.1004595107

    Article  ADS  Google Scholar 

  25. R. W. Havener, Y. Liang, L. Brown, L. Yang, and J. Park, Nano Lett. 14, 3353 (2014). doi 10.1021/nl500823k

    Article  ADS  Google Scholar 

  26. H. Patel, R. W. Havener, L. Brown, Y. Liang, L. Yang, J. Park, et al., Nano Lett. 2015, 5932 (2015). doi 10.1021/acs.nanolett.5b02035

    Article  ADS  Google Scholar 

  27. R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, Nano Lett. 10, 398 (2010). doi 10.1021/nl902741x

    Article  ADS  Google Scholar 

  28. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013). doi 10.1038/nnano.2013.46

    Article  ADS  Google Scholar 

  29. A. C. Ferrari, Solid State Commun. 143, 47 (2007). doi 10.1016/j.ssc.2007.03.052

    Article  ADS  Google Scholar 

  30. L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alved, et al., Phys. Rev. B 76, 201401 (2007). doi 10.1103/PhysRevB.76.201401

    Article  ADS  Google Scholar 

  31. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, et al., Nano Lett. 7, 238 (2007). doi 10.1021/nl061702a

    Article  ADS  Google Scholar 

  32. A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31, 579 (2008). doi 10.1007/s12034-008-0090-5

    Article  Google Scholar 

  33. M. Bayle, N. Reckinger, A. Felten, P. Lois, O. Lancry, B. Dutertre, et al., J. Raman Spectrosc. 49, 36 (2018). doi 10.1002/jrs.5279

    Article  ADS  Google Scholar 

  34. D. Yoon, H. Moon, H. Cheong, J. Choi, J. Choi, and B. Park, J. Korean Phys. Soc. 55, 1299 (2009). doi 10.3938/jkps.55.1299

    Article  ADS  Google Scholar 

  35. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, et al., ACS Nano 5, 1594 (2011). doi 10.1021/nn1031017

    Article  Google Scholar 

  36. F. Herziger, C. Tyborski, O. Ochedowski, M. Schleberger, and J. Maultzsch, Carbon 133, 254 (2018). doi 10.1016/j.carbon.2018.03.026

    Article  Google Scholar 

  37. J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhausd, and M. S. Dresselhaus, Carbon 47, 1303 (2009). doi 10.1016/j.carbon.2009.01.009

    Article  Google Scholar 

  38. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Phys. Rev. Lett. 97, 187401 (2006). doi 10.1103/physrevlett.97.187401

    Article  ADS  Google Scholar 

  39. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009). doi 10.1016/j.physrep.2009.02.003

    Article  ADS  Google Scholar 

  40. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008). doi 10.1007/s12274-008-8036-1

    Article  Google Scholar 

  41. C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, ACS Nano 5, 8760 (2011). doi 10.1021/nn203472f

    Article  Google Scholar 

  42. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, et al., Small 6, 195 (2010). doi 10.1002/smll.200901173

    Article  Google Scholar 

  43. N. K. Smolentsev, Fundamentals of the Theory of Wavelets in MATLAB (DMK, Moscow, 2005) [in Russian].

    Google Scholar 

  44. N. M. Astafieva, Phys. Usp. 39, 1085 (1996). doi 10.3367/UFNr.0166.199611a.1145

    Article  ADS  Google Scholar 

  45. O. Rioul and M. Vetterli, IEEE Signal Process. Mag. 8, 14 (1991). doi 10.1109/79.91217

    Article  ADS  Google Scholar 

  46. M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelets and Their Applications (ISTE, London, 2007). doi 10.1002/9780470612491.fmatter

    Book  MATH  Google Scholar 

  47. P. Blake, E. W. Hill, Castro A. H. Neto, K. S. No-voselov, D. Jiang, R. Yang, et al., Appl. Phys. Lett. 91, 063124 (2007). doi 10.1063/1.2768624

    Article  ADS  Google Scholar 

  48. Y. K. Koh, M-H. Bae, D. G. Cahill, and E. Pop, ACS Nano 5, 269 (2011). doi 10.1021/nn102658a

    Article  Google Scholar 

  49. T. E. Timofeeva, S. A. Smagulova, and V. I. Popov, Semiconductors 49, 814 (2015). doi 10.1134/S1063782615060251

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Timofeeva.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, T.E., Neustroev, E.P., Popov, V.I. et al. Application of Wavelet Transform to the Raman 2D Peak Components Analysis for Tri- and Tetralayer Graphene. Opt. Spectrosc. 125, 619–626 (2018). https://doi.org/10.1134/S0030400X18110322

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18110322

Navigation