Skip to main content
Log in

Deconvolution of Raman spectra of disordered monolayer graphene: an approach to probe the phonon modes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper explores the phonon modes from the Raman spectrum of disordered monolayer epitaxial graphene using the deconvolution technique. The phonon density of states (PDOS) of pristine monolayer graphene has been enumerated and convoluted by a Gaussian function to check the accuracy of the deconvolution process. We show that the original PDOS is recovered by deconvolution of the convoluted spectrum with the same spread function. We propose that the PDOS of pristine monolayer graphene is similar to that of the relative intensity of the deconvoluted Raman spectrum of disordered epitaxial graphene. These results could be used for identifying the intensity of individual phonon modes to justify the structure, and probing the mechanism of changing the phonon modes with various types of defects formed in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  2. Castro Neto A, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109

    Article  CAS  Google Scholar 

  3. Das R K, Saha S, Chelli V R et al 2018 Bull. Mater. Sci. 41 86

    Article  Google Scholar 

  4. Das A, Chakraborty B and Sood A K 2008 Bull. Mater. Sci. 31 579

    Article  CAS  Google Scholar 

  5. Kalbac M, Reina-Cecco A, Farhat H, Kong J, Kavan L and Dresselhaus M S 2010 ACS Nano 10 6055

    Article  Google Scholar 

  6. Cançado L G, Silva M G, da Ferreira E H M, Hof F, Kampioti K, Huang K et al 2017 2D Mater. 4 025039

  7. Tivanov M S, Kolesov E A, Korolik O V, Saad A M and Komissarov I V 2018 J. Low Temp. Phys. 190 20

    Article  CAS  Google Scholar 

  8. Lazzeri M, Attaccalite C, Wirtz L and Mauri F 2008 Phys. Rev. B 78 081406

    Article  Google Scholar 

  9. Ferrari A C, Meyer C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al 2006 Phys. Rev. Lett. 97 187401

    Article  CAS  Google Scholar 

  10. Ferrari A C 2007 Solid State Commun. 143 47

    Article  CAS  Google Scholar 

  11. Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V et al 2008 Nat. Nanotech. 3 210

    Article  CAS  Google Scholar 

  12. Islam M S, Bhuiyan A G, Tanaka S, Makino T and Hashimoto A 2014 Appl. Phys. Lett. 105 243103

    Article  Google Scholar 

  13. Islam M S, Tamakawa D, Tanaka S, Makino T and Hashimoto A 2014 Carbon 77 1073

    Article  CAS  Google Scholar 

  14. Narula R and Reich S 2008 Phys. Rev. B 78 165422

    Article  Google Scholar 

  15. Venezuela P, Lazzeri M and Mauri F 2011 Phys. Rev. B 84 035433

    Article  Google Scholar 

  16. Saito R, Hofmann M, Dresselhaus G, Jorio A and Dresselhaus M S 2011 Adv. Phys. 60 413

    Article  CAS  Google Scholar 

  17. Islam M S, Ushida K, Tanaka S, Makino T and Hashimoto A 2014 Comput. Mater. Sci. 94 35

    Article  CAS  Google Scholar 

  18. Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X et al 2014 ACS Nano 8 10837

    Article  CAS  Google Scholar 

  19. Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51

    Article  CAS  Google Scholar 

  20. Shuker R and Gammon R W 1970 Phys. Rev. Lett. 25 222

    Article  CAS  Google Scholar 

  21. Smith J E, Brodsky M H, Crowder B L and Nathan M I 1972 J. Non-Cryst. Solids 8–10 179

    Article  Google Scholar 

  22. Wada N, Gaczi P J and Solin S A 1980 J. Non-Cryst. Solids 35–36 543

    Article  Google Scholar 

  23. Wang Q, Allred D D and Knight L V 1995 J. Raman Spect. 26 1039

    Article  CAS  Google Scholar 

  24. Jansson P A 1984 (eds) Deconvolution. With applications in spectroscopy (Orlando: Academic Press)

  25. Williams M L and Maris H J 1985 Phys. Rev. B 31 4508

    Article  CAS  Google Scholar 

  26. Gruneis A, Saito R, Kimura T, Cancado L G, Pimenta M A, Jorio A et al 2002 Phys. Rev. B 65 155405

    Article  Google Scholar 

  27. Vidano R and Fischbach D B 1978 J. Am. Ceram. Soc. 61 13

    Article  CAS  Google Scholar 

  28. Thomsen C and Reich S 2000 Phys. Rev. Lett. 85 5214

    Article  CAS  Google Scholar 

  29. Saito R, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S and Pimenta M A 2001 Phys. Rev. Lett. 88 027401

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof Satoru Tanaka of Kyushu University, Kyushu, Japan, for providing the sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sherajul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Anindya, K.N., Bhuiyan, A.G. et al. Deconvolution of Raman spectra of disordered monolayer graphene: an approach to probe the phonon modes. Bull Mater Sci 42, 147 (2019). https://doi.org/10.1007/s12034-019-1856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1856-7

Keywords

Navigation