Skip to main content
Log in

The Reasons for Nonlinear Phenomena in Oxidation of Methane over Nickel

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic oxidation of methane over nickel foil is studied. It is shown that, under the oxygen-lean conditions in the regime of a flow-type reactor, nonlinear phenomena can appear in the form of self-sustained oscillations of the reaction rate and the catalyst temperature. To determine the reasons for self-sustained oscillations, X-ray diffraction and mass spectrometry in the operandо mode were used. It was found that the appearance of oscillations in the methane oxidation is due to periodical oxidation–reduction of the surface layer of nickel foil; metallic nickel has a higher catalytic activity than NiO. The oscillations of the catalyst temperature are determined by the occurrence of exothermic and endothermic processes associated with the reduction of nickel oxide and methane oxidation on the surface of metallic nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ertl, G., Adv. Catal., 1990, vol. 37, p. 213.

    CAS  Google Scholar 

  2. Slinko, M.M. and Jaeger, N.I., Oscillating Heterogeneous Catalytic Systems, Elsevier, 1994, vol. 86, p. 1.

    Article  Google Scholar 

  3. Imbihl, R. and Ertl, G., Chem. Rev., 1995, vol. 95, p. 697.

    Article  CAS  Google Scholar 

  4. Matveev, A.V., Kaichev, V.V., Saraev, A.A., Gorodetskii, V.V., Knop-Gericke, A., Bukhtiyarov, V.I., and Nieuwenhuys, B.E., Catal. Today, 2015, vol. 244, p. 29.

    Article  CAS  Google Scholar 

  5. Kaichev, V.V., Saraev, A.A., Matveev, A.V., Dubinin, Y.V., Knop-Gericke, A., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2018, vol. 122, p. 4315.

    Article  CAS  Google Scholar 

  6. Zhang, X., Lee, C., Hayward, D., and Mingos, D., Catal. Today, 2005, vol. 105, p., 283.

  7. Hendriksen, B.L.M., Ackermann, M.D., van Rijn, R., Stoltz, D., Popa, I., Balmes, O., Resta, A., Wermeille, D., Felici, R., Ferrer, S., and Frenken, J.W.M., Nat. Chem., 2010, vol. 2, p. 730.

    Article  CAS  PubMed  Google Scholar 

  8. Kaichev, V.V., Gladky, A.Y., Prosvirin, I.P., Saraev, A.A., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Surf. Sci., 2013, vol. 609, p. 113.

    Article  CAS  Google Scholar 

  9. Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., and Helveg, S., Nat. Mater., 2014, vol. 13, p. 884.

    Article  CAS  PubMed  Google Scholar 

  10. Bychkov, V.Y., Tyulenin, Y.P., Gorenberg, A.Y., Sokolov, S., and Korchak, V.N., Appl. Catal., A, 2014, vol. 485, p. 1.

  11. Kaichev, V.V., Teschner, D., Saraev, A.A., Kosolobov, S.S., Gladky, A.Y., Prosvirin, I.P., Rudina, N.A., Ayupov, A.B., Blume, R., Hävecker, M., Knop-Gericke, A., Schlögl, R., Latyshev, A.V., and Bukhtiyarov, V.I., J. Catal., 2016, vol. 334, p. 23.

    Article  CAS  Google Scholar 

  12. Gorodetskii, V., Lauterbach, J., Rotermund, H.H., Block, J.H., and Ertl, G., Nature, 1994, vol. 370, p. 276.

    Article  CAS  Google Scholar 

  13. Kim, M., Bertram, M., Pollmann, M., Oertzen, A.V., Mikhailov, A.S., Rotermund, H.H., and Ertl, G., Science, 2001, vol. 292, p. 1357.

    Article  CAS  PubMed  Google Scholar 

  14. Kaichev, V.V., Saraev, A.A., Gladky, A.Y., Prosvirin, I.P., Blume, R., Teschner, D., Hävecker, M., Knop-Gericke, A., Schlögl, R., and Bukhtiyarov, V.I., Phys. Rev. Lett., 2017, vol. 119, p. 026001.

    Article  CAS  PubMed  Google Scholar 

  15. Zhdanov, V.P., Phys. Rev. E, 1999, vol. 59, p. 6292.

    Article  CAS  Google Scholar 

  16. Saraev, A.A., Kaichev, V.V., Bukhtiyarov, V.I., and Kosolobov, S.S., Kinet. Catal., 2015, vol. 56, vol. 5, p. 598.

  17. Knop-Gericke, A., Kleimenov, E., Hävecker, M., Blume, R., Teschner, D., Zafeiratos, S., Schlögl, R., Bukhtiyarov, V.I., Kaichev, V.V., Prosvirin, I.P., Nizovskii, A.I., Bluhm, H., Barinov, A., Dudin, P., and Kiskinova, M., Adv. Catal., 2009, vol. 52, p. 213.

    CAS  Google Scholar 

  18. Bulavchenko, O.A., Vinokurov, Z.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Tsybulya, S.V., Saraev, A.A., and Kaichev, V.V., Dalton Trans., 2015, vol. 44, p. 15499.

    Article  CAS  PubMed  Google Scholar 

  19. Bulavchenko, O.A., Venediktova, O.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Saraev, A.A., Kaichev, V.V., and Tsybulya, S.V., RSC Adv., 2018, vol. 8, p. 11598.

    Article  CAS  Google Scholar 

  20. Aulchenko, V.M., Evdokov, O.V., Kutovenko, V.D., Pirogov, B.Y., Sharafutdinov, M.R., Titov, V.M., Tolochko, B.P., Vasiljev, A.V., Zhogin, I.A., and Zhulanov, V.V., Nucl. Instrum. Methods Phys. Res., Sect. A., 2009, vol. 603, p. 76.

    CAS  Google Scholar 

  21. Fytyk 1.2.9. http://www.fityk.nieto.pl.

  22. Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2002, vol. 83, p. 149.

    Article  CAS  Google Scholar 

  23. Zhang, X., Hayward, D.O., and Mingos, D.M.P., Catal. Lett., 2003, vol. 86, p. 235.

    Article  CAS  Google Scholar 

  24. Bychkov, V.Y., Tyulenin, Y.P., Korchak, V.N., and Aptekar, E.L., Appl. Catal., A, 2006, vol. 304, p., 21.

  25. Yu, J., Rosso, K.M., and Bruemmer, S.M., J. Phys. Chem. C, 2012, vol. 116, p. 1948.

    Article  CAS  Google Scholar 

  26. Bychkov, V.Y., Tulenin, Y.P., Slinko, M.M., Khudorozhkov, A.K., Bukhtiyarov, V.I., Sokolov, S., and Korchak, V.N., Appl. Catal., A, 2016, vol. 522, p. 40.

  27. Stötzel, J., Frahm, R., Kimmerle, B., Nachtegaal, M., and Grunwaldt, J.-D., J. Phys. Chem. C, 2012, vol. 116, p. 599.

    Article  CAS  Google Scholar 

  28. Weaver, J.F., Chem. Rev., 2013, vol. 113, p. 4164.

    Article  CAS  PubMed  Google Scholar 

  29. Martin, N.M., Van den Bossche, M., Hellman, A., Grönbeck, H., Hakanoglu, C., Gustafson, J., Blomberg, S., Johansson, N., Liu, Z., Axnanda, S., Weaver, J.F., and Lundgren, E., ACS Catal., 2014, vol. 4, p. 3330.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed within the framework of the budget project (АААА-А17-117041710078-1) for Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences. In situ/operandо XRD studied were carried out using the equipment of the Shared Use Center Siberian Center for Synchrotron and Terahertz Radiation at Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kaichev.

Additional information

Translated by Andrey Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraev, A.A., Vinokurov, Z.S., Shmakov, A.N. et al. The Reasons for Nonlinear Phenomena in Oxidation of Methane over Nickel. Kinet Catal 59, 810–819 (2018). https://doi.org/10.1134/S0023158418060149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418060149

Keywords:

Navigation