Skip to main content
Log in

Synthesis and Characterization of CdS Photocatalyst with Different Morphologies: Visible Light Activated Dyes Degradation Study

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

CdS nanoparticles (CdS NPs) and CdS nanoslabs (CdS NSs) were synthesized from the single source (SS) and multi-source (MS) precursors, respectively. Our target was to observe any change in morphology by altering the synthetic route. CdS NPs with spherical morphology (0.2–0.5 µm in diameter) were obtained by using the SS precursor route via the formation of a Cd-complex. CdS NSs (100–200 nm in length, 50–100 nm wide and 25–50 nm in thickness) were obtained by using the MS precursors, by direct addition of the ligand to metal salt. Both NPs and NSs were used for the degradation of four different cationic organic dyes viz., malachite green (MG), methylene blue (MB), rhodamine B (RhB) and methyl violet (MV) under visible light. CdS NPs synthesized from SS precursor exhibited higher photocatalytic activity than CdS NSs fabricated via MS precursor due to spherical morphologies (small size of particles increases the surface area) and higher band gap. On the other hand, CdS NSs show sheet or cube like morphologies. The kinetic study proved that the rate constants for the MG, MB, MV, and RhB degradation by CdS NPs (1.65 × 10–2, 1.25 × 10–2, 1.2 × 10–2, and 1.24 × 10–2 min–1, respectively) are higher than those for CdS NSs (1.45 × 10–2, 1.13 × 10–2, 1.05 × 10–2, 1.14 × 10–2 min–1, respectively). The precursors were characterized by 1H and 13C nuclear magnetic resonance. Phase pattern and composition of CdS were confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy. Morphology and size were confirmed by transmission electron microscopy and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bajpai, P.K., Yadav, S., Tiwari, A., and Virk, H.S., Solid State Phenom., 2015, vol. 222, p. 187.

    Article  CAS  Google Scholar 

  2. Chen, J., Bradhurst, D., Dou, S., and Liu, H.K., J. Electrochem. Soc., 1999, vol. 146, no. 10, p. 3606.

    Article  CAS  Google Scholar 

  3. Bahadur, A., Iqbal, S., Saeed, A., Bashir, M.I., Shoaib, M., Waqas, M., Shabir, G., and Jabbar, A., Chem. Pap., 2017, vol. 71, no. 8, p. 1445.

    Article  CAS  Google Scholar 

  4. Pickett, N.L., Foster, D.F., and Cole-Hamilton, D.J., J. Mater. Chem., 1996, vol. 6, no. 3, p. 507.

  5. Nikazara, M., Gholivand, K., and Mahanpoor, K., Kinet. Catal., 2007, vol. 48, no. 2, p. 214.

    Article  CAS  Google Scholar 

  6. Li, W.N., Yuan, J., Shen, X.F., Gomez-Mower, S., Xu, L.P., Sithambaram, S., Aindow, M., and Suib, S.L., Adv. Funct. Mater., 2006, vol. 16, no. 9, p. 1247.

    Article  CAS  Google Scholar 

  7. Nie, L., Gao, L., Feng, P., Zhang, J., Fu, X., Liu, Y., Yan, X., and Wang, T., Small, 2006, vol. 2, no. 5, p. 621.

    Article  CAS  PubMed  Google Scholar 

  8. Tang, Z., Kotov, N.A., and Giersig, M., Science, 2002, vol. 297, no. 5579, p. 237.

    Article  CAS  PubMed  Google Scholar 

  9. Zhong, Z., Yin, Y., Gates, B., and Xia, Y., Adv. Mater., 2000, vol. 12, no. 3, p. 206.

    Article  CAS  Google Scholar 

  10. Chen, Y., Wang, L., Lu, G.M., Yao, X., and Guo, L., J. Mater. Chem., 2011, vol. 21, no. 13, p. 5134.

    Article  CAS  Google Scholar 

  11. Xiong, J., Cheng, G., Lu, Z., Tang, J., Yu, X., and Chen, R., CrystEngComm, 2011, vol. 13, no. 7, p. 2381.

    Article  CAS  Google Scholar 

  12. Zhu, L.-P., Xiao, H.-M., Liu, X.-M., and Fu, S.-Y., J. Mater. Chem., 2006, vol. 16, no. 19, p. 1794.

    Article  CAS  Google Scholar 

  13. Bahadur, A., Saeed, A., Iqbal, S., Shoaib, M., Ahmad, I., ur Rahman, M.S., Bashir, M.I., Yaseen, M., and Hussain, W., Ceram. Int., 2017, vol. 43, no. 9, p. 7346.

    Article  CAS  Google Scholar 

  14. Ghasemi, Y., Peymani, P., and Afifi, S., Acta Biomed., 2009, vol. 80, no. 2, p. 156.

    PubMed  Google Scholar 

  15. Iqbal, S., Bahadur, A., Saeed, A., Zhou, K., Shoaib, M., and Waqas, M., J. Colloid Interface Sci., 2017, vol. 502, p. 16.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Z., Bai, H., and Sun, D., Appl. Catal., B, 2011, vol. 104, no. 3, p. 234.

    Article  CAS  Google Scholar 

  17. Roy, P., Berger, S., and Schmuki, P., Angew. Chem., 2011, vol. 50, no. 13, p. 2904.

    Article  CAS  Google Scholar 

  18. Waqas, M., Iqbal, S., Bahadur, A., Saeed, A., Raheel, M., and Javed, M., Appl. Catal., B, 2017, vol. 219, p. 30.

    Article  CAS  Google Scholar 

  19. Ghows, N., and Entezari, M., Ultrason. Sonochem., 2011, vol. 18, no. 1, p. 269.

  20. Kumar, R.V., Palchik, O., Koltypin, Y., Diamant, Y., and Gedanken, A., Ultrason. Sonochem., 2002, vol. 9, no. 2, p. 65.

    Article  CAS  Google Scholar 

  21. Murugan, A.V., Sonawane, R., Kale, B., Apte, S., and Kulkarni, A.V., Mater. Chem. Phys., 2001, vol. 71, no. 1, p. 98.

    Article  Google Scholar 

  22. Okuyama, K., Lenggoro, I.W., Tagami, N., Tamaki, S., and Tohge, N., J. Mater. Sci., 1997, vol. 32, no. 5, p. 1229.

    Article  CAS  Google Scholar 

  23. Tai, G.a., Zhou, J., and Guo, W., Nanotechnology, 2010, vol. 21, no. 17, p. 175601.

    Article  CAS  PubMed  Google Scholar 

  24. Bahadur, A., Saeed, A., Shoaib, M., Iqbal, S., Bashir, M.I., Waqas, M., Hussain, M.N., and Abbas, N., Mater. Chem. Phys., 2017, vol. 198, p. 229.

    Article  CAS  Google Scholar 

  25. Erra, S., Shivakumar, C., Zhao, H., Barri, K., Morel, D., and Ferekides, C., Thin Solid Films, 2007, vol. 515, no. 15, p. 5833.

    Article  CAS  Google Scholar 

  26. Jing, D. and Guo, L., J. Phys. Chem. B, 2006, vol. 110, no. 23, p. 11139.

    Article  CAS  PubMed  Google Scholar 

  27. Hussain, W., Badshah, A., Hussain, R.A., Aleem, M.A., Bahadur, A., Iqbal, S., Farooq, M.U., and Ali, H., Mater. Chem. Phys., 2017, vol. 194, p. 345.

    Article  CAS  Google Scholar 

  28. Bao, N., Shen, L., Takata, T., Domen, K., Gupta, A., Yanagisawa, K., and Grimes, C.A. J. Phys. Chem. C, 2007, vol. 111, no. 47, p. 17527.

  29. Morales, A.M., and Lieber, C.M., Science, 1998, vol. 279, no. 5348, p. 208.

    Article  CAS  PubMed  Google Scholar 

  30. Li, C., Yuan, J., Han, B., and Shangguan, W., Int. J. Hydrogen Energy, 2011, vol. 36, no. 7, p. 4271.

    Article  CAS  Google Scholar 

  31. Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., and Nadeem, M.A., RSC Adv., 2014, vol. 4, no. 70, p. 37003.

    Article  CAS  Google Scholar 

  32. Hu, Y., Liu, Y., Qian, H., Li, Z., and Chen, J., Langmuir, 2010, vol. 26, no. 23, p. 18570.

    Article  CAS  Google Scholar 

  33. Kansal, S., Singh, M., and Sud, D., J. Hazard. Mater., 2007, vol. 141, no. 3, p. 581.

    Article  CAS  PubMed  Google Scholar 

  34. Lin, G., Zheng, J., and Xu, R., J. Phys. Chem. C, 2008, vol. 112, no. 19, p. 7363.

    Article  CAS  Google Scholar 

  35. Ounnar, A., Favier, L., Bouzaza, A., Bentahar, F., and Trari, M., Kinet. Catal., 2016, vol. 57, no. 2, p. 200.

    Article  CAS  Google Scholar 

  36. Dutta, A.K., Maji, S.K., Srivastava, D.N., Mondal, A., Biswas, P., Paul, P., and Adhikary, B., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 4, p. 1919.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are highly thankful to the Higher Education Commission (HEC) (Pakistan) and Quaid-i-Azam University (Islamabad) for providing all the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Hussain or A. Badshah.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, W., Malik, H., Bahadur, A. et al. Synthesis and Characterization of CdS Photocatalyst with Different Morphologies: Visible Light Activated Dyes Degradation Study. Kinet Catal 59, 710–719 (2018). https://doi.org/10.1134/S0023158418060058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418060058

Keywords:

Navigation