Skip to main content
Log in

Latency of auditory P300 response is related with cognitive deficits in Obstructive Sleep Apnea Syndrome

  • Original Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Obstructive Sleep Apnea Syndrome (OSAS) is characterized by desaturation in blood oxygen level and sleep fragmentation because of repeated upper airway obstruction. Auditory Event related potentials (AERPs) are scalp recorded voltage fluctuations, which reflect several cognitive processes generated within specific brain regions during auditory stimulus processing. In this study, we aimed to investigate cognitive deficits in OSAS patients with AERPs by taking the effects of aging factor into consideration. AERPs were recorded using an auditory oddball paradigm from 27 OSAS patients (range 28 to 67 years old) and 29 healthy control subjects (range 23 to 60 years old) participated in the study. To evaluate the effects of aging, both the OSAS patients and the controls were divided into two age groups: younger (<45 years) and older (≥45 years). Amplitudes and latencies of N100, P200, N200 and P300 responses to oddball target stimuli were analyzed by repeated measures analyses of variance (ANOVA). Statistical analyses indicate that the P300 amplitudes were lower (P< 0.001), and P300 latencies were longer (P< 0.001) in OSAS patients. However, AERPs when analyzed according to age groups: P300 latencies were significantly longer in both younger and older OSAS patients (P < 0.05) but P300 amplitudes were not different in older OSAS patients compared to controls (P > 0.05). Our results suggest that negative effects of OSAS on cognitive functions could be observed with event-related brain responses. Changes in the P300 latencies are more robust evidence than other AERP components in evaluating cognitive deficits in OSAS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Academy of Sleep Medicine. International Classifications of Sleep Disorders. Diagnostic and Coding Manual, 2nd edn, Vol. III. American Academy of Sleep Medicine: Westchester, 2005.

    Google Scholar 

  2. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle aged adults. N. Engl. J. Med. 1993; 328: 1230–5.

    Article  CAS  PubMed  Google Scholar 

  3. Ancoli-Israel S, Kripke DF, Klauder MR, Masson WJ, Fell R, Kaplan O. Sleep-disordered breathing in community-dwelling elderly. Sleep 1991; 14: 485–95.

    Google Scholar 

  4. Young T, Peppard PE, Bottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am. J. Respir. Crit. Care Med. 2002; 165: 1217–39.

    Article  PubMed  Google Scholar 

  5. Aloia MS, Arnedt JT, Davis JD, Riggs RL, Byrd D. Neuropsychological consequences of sleep apnea: a critical review. J. Int. Neuropsychol. Soc. 2004; 10: 772–85.

    Article  PubMed  Google Scholar 

  6. McArdle N, Riha RL, Vennelle M et al. Sleep-disordered breathing as a risk factor for cerebrovascular disease: a case-control study in patients with transient ischemic attacks. Stroke 2003; 34: 2916–21.

    Article  PubMed  Google Scholar 

  7. Mooe T, Franklin KA, Holmstrom K, Rabben T, Wiklund U. Sleep disordered breathing and coronary artery disease: long-term prognosis. Am. J. Respir. Crit. Care Med. 2001; 164: 1910–13.

    Article  CAS  PubMed  Google Scholar 

  8. Engleman HM, Douglas NJ. Sleep 4. Sleepiness, cognitive function, and quality of life in obstructive sleep apnoea/hypopnoea syndrome. Thorax 2004; 59: 618–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. George CF. Sleep 5. Driving and automobile crashes in patients with obstructive sleep apnoea/hypopnoea syn-drome. Thorax 2004; 59: 804–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matthews EE, Aloia MS. Cognitive recovery following positive airway pressure (PAP) in sleep apnea. Prog. Brain Res. 2011; 190: 71–88.

    Article  PubMed  Google Scholar 

  11. Colrain IM, Trinder J. Central and autonomic nervous systems. In: Kushida CA, ed. Obstructive Sleep Apnea: Pathophysiology Comorbidities and Consequences. Informa Healthcare: New York, 2007; 275–92.

    Google Scholar 

  12. Decary A, Rouleau I, Monplaisir J. Cognitive deficits associated with sleep apnoea syndrome: a proposed neuropsychological test battery. Sleep 2000; 23: 369–81.

    CAS  PubMed  Google Scholar 

  13. Engelman HM, Kingshot RN, Martin SE, Douglas NJ. Cognitive function in the sleep apnoea/hypopnoea syn-drome (SAHS). Sleep 2000; 23: 102–8.

    Google Scholar 

  14. Banno K, Kryger MH. Sleep apnea: clinical investigations in humans. Sleep Med. 2007; 8: 400–26.

    Article  PubMed  Google Scholar 

  15. Altenmüller EO. Psychophysiology and EEG. In: Niedermeyer E, Lopes da Silva FH, eds. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 3rd edn. Williams & Wilkins: Baltimore, MD, 1993; 597–613.

    Google Scholar 

  16. Polich J. P300 in clinical applications: meaning, method, and measurement. In: Niedermeyer E, Lopes da Silva FH, eds. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 3rd edn. Williams & Wilkins: Baltimore, MD, 1993; 1005–18.

    Google Scholar 

  17. Polich J, Eischen SE, Collins GE. P300 from a single auditory stimulus. Electroencephalogr. Clin. Neurophysiol. 1994; 92: 253–61.

    Article  CAS  PubMed  Google Scholar 

  18. Picton TW, Bentin S, Berg P et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psycho-physiology 2000; 37: 27–152.

    Google Scholar 

  19. Duncan CC, Barry RJ, Connolly JF et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009; 120: 1883–908.

    Article  PubMed  Google Scholar 

  20. van Dijk JG, Jennekens-Schinkel A, Caekebeke JF, Zwinderman AH. Are event-related potentials in multiple sclerosis indicative of cognitive impairment? Evoked and event-related potentials, psychometric testing and response speed: a controlled study. J. Neurol. Sci. 1992; 109: 18–24.

    Article  PubMed  Google Scholar 

  21. Emerson RG, Adams DC. Intraoperative monitoring by evoked potential techniques. In: Aminoff MJ, ed. Electrodiagnosis in Clinical Neurology, 5th edn. Churchill Livingstone: Philadelphia, PA, 2005; 627–47.

    Chapter  Google Scholar 

  22. Ayalon L, Peterson S. Functional central nervous system imaging in the investigation of obstructive sleep apnea. Curr. Opin. Pulm. Med. 2007; 13: 479–83.

    Article  PubMed  Google Scholar 

  23. Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol. Psychol. 1995; 41: 103–46.

    Article  CAS  PubMed  Google Scholar 

  24. Gosselin N, Mathieu A, Mazza S, Petit D, Malo J, Montplaisir J. Attentional deficits in patients with obstructive sleep apnea syndrome: an event-related potential study. Clin. Neurophysiol. 2006; 117: 2228–35.

    Article  PubMed  Google Scholar 

  25. Martins CH, Castro Júnior ND, Costa Filho OA, Souza Neto OM. Obstructive sleep apnea and P300 evoked auditory potential. Braz J. Otorhinolaryngol. 2011; 77: 700–5.

    PubMed  Google Scholar 

  26. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine: Westchester, IL, 2007; 17–18.

    Google Scholar 

  27. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14: 540–5.

    CAS  PubMed  Google Scholar 

  28. Polich J, Alexander JE, Bauer LO. P300 topography of amplitude/latency correlations. Brain Topogr. 1997; 9: 275–82.

    Article  CAS  PubMed  Google Scholar 

  29. Lopes Da Silva FH. Event-related potentials: methodology and quantification. In: Niedermeyer E, Lopes da Silva FH, eds. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Williams & Wilkins: Baltimore, MD, 2005; 991–1001.

    Google Scholar 

  30. Polich J, Criado JR. Neuropsychology and neuropharmacology of P3a and P3b. Int. J. Psychophysiol. 2006; 60: 172–85.

    Article  PubMed  Google Scholar 

  31. Donchin I, Coles MG. Is the P300 component a manifestation of context updating? Behav. Brain Sci. 1988; 11: 357–74.

    Article  Google Scholar 

  32. Polich J, Herbst KL. P300 as a clinical assay: rationale, evaluation, and findings. Int. J. Psychophysiol. 2000; 38: 3–19.

    Article  CAS  PubMed  Google Scholar 

  33. Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 1977; 197: 792–5.

    Article  CAS  PubMed  Google Scholar 

  34. Polich J. Attention, probability, and task demands as determinants of P300 latency from auditory stimuli. Electroencephalogr. Clin. Neurophysiol. 1986; 63: 251–9.

    Article  CAS  PubMed  Google Scholar 

  35. Polich J. P300, probability, and interstimulus interval. Psychophysiol 1990; 27: 396–403.

    Article  CAS  Google Scholar 

  36. Sangal RB, Sangal JM. P300 latency: abnormal in sleep apnea with somnolence and idiopathic hypersomnia, but normal in narcolepsy. Clin. Electroencephalogr 1995; 26: 146–53.

    Article  CAS  PubMed  Google Scholar 

  37. Kotterba S, Rasche K, Widdig W et al. Neuropsy-chological investigations and event-related potentials in obstructive sleep apnea syndrome before and during CPAP-therapy. J. Neurol. Sci. 1998; 159: 45–50.

    Article  CAS  PubMed  Google Scholar 

  38. Rumbach L, Krieger J, Kurtz D. Auditory event-related potentials in obstructive sleep apnea: effects of treatment with nasal continuous positive airway pressure. Electroencephalogr. Clin. Neurophysiol. 1991; 8: 454–7.

    Article  Google Scholar 

  39. Walsleben J, Squires NK, Rothenberger VL. Auditory event-related potentials and brain dysfunction in sleep apnea. Electroencephalogr. Clin. Neurophysiol. 1989; 74: 297–311.

    Article  CAS  PubMed  Google Scholar 

  40. Sangal RB, Sangal JM. Obstructive sleep apnea and abnormal P300 latency topography. Clin. Electroencephalogr 1997; 28: 16–25.

    Article  CAS  PubMed  Google Scholar 

  41. Sangal R, Sangal J. Abnormal visual P300 latency in obstructive sleep apnea does not change acutely upon treatment with CPAP. Sleep 1997; 20: 702–4.

    CAS  PubMed  Google Scholar 

  42. Afifi L, Guilleminault C, Colrain IM. Sleep and respiratory stimulus specific dampening of cortical responsiveness in OSAS. Respir. Physiol. Neurobiol. 2003; 136: 221–34.

    Article  PubMed  Google Scholar 

  43. Wong KK, Grunstein RR, Bartlett DJ, Gordon E. Brain function in obstructive sleep apnea: results from the Brain Resource International Database. J. Integr. Neurosci. 2006; 5: 111–21.

    Article  PubMed  Google Scholar 

  44. Kiehl KA, Laurens KR, Duty TL, Forster BB, Liddle PF. Neural sources involved in auditory target detection and novelty processing: an event related fMRI study. Psychophysiology 2001; 38: 133–42.

    Article  CAS  PubMed  Google Scholar 

  45. Ludowig E, Bien CG, Elger CE, Rosburg T. Two P300 generators in the hippocampal formation. Hippocampus 2010; 20: 186–95.

    Article  PubMed  Google Scholar 

  46. Nieuwenhuis S, Aston-Jones G, Cohen J. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 2005; 131: 510–32.

    Article  PubMed  Google Scholar 

  47. Alchanatis M, Deligiorgis N, Zias N et al. Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. Eur. Respir. J. 2004; 24: 980–6.

    Article  CAS  PubMed  Google Scholar 

  48. Thomas RJ, Rosen BR, Stern CE, Weiss JW, Kwong KK. Functional imaging of working memory in obstructive sleep-disordered breathing. J. Appl. Physiol. 2005; 98: 2226–34.

    Article  PubMed  Google Scholar 

  49. Ayalon L, Ancoli-Israel S, Aka AA, McKenna BS, Drummond SP. Relationship between obstructive sleep apnea severity and brain activation during a sustained attention task. Sleep 2009; 32: 373–81.

    PubMed  PubMed Central  Google Scholar 

  50. Polich J, Ladish C, Burns T. Normal variation of P300 in children: age, memory span, and head size. Int. J. Psychophysiol. 1990; 9: 237–48.

    Article  CAS  PubMed  Google Scholar 

  51. Miyamoto T, Miyamoto M, Takekawa H, Kubo J, Hirata K, Katayama S. A comparison of middle latency auditory-evoked response in obstructive sleep apnea syndrome before and after treatment. Psychiatry Clin. Neurosci. 2001; 55: 251–2.

    Article  CAS  PubMed  Google Scholar 

  52. Mathieu A, Mazza S, Décary A et al. Effects of obstructive sleep apnea on cognitive function: a comparison between younger and older OSAS patients. Sleep Med. 2008; 9: 112–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Akcali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akcali, A., Sahin, E., Ergenoglu, T. et al. Latency of auditory P300 response is related with cognitive deficits in Obstructive Sleep Apnea Syndrome. Sleep Biol. Rhythms 13, 49–56 (2015). https://doi.org/10.1111/sbr.12076

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/sbr.12076

Navigation