Skip to main content

Advertisement

Log in

Adeno-associated virus-mediated delivery of glial cell line-derived neurotrophic factor protects motor neuron-like cells from apoptosis

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Motor neuron disorders including amyotrophic lateral sclerosis may benefit from the induction of neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) that are known to be trophic and protective for motor neurons. However, the application of such factors is limited by an inability to successfully target their expression in the nervous system. In this study we investigate the potential of using adeno-associated virus (AAV) as a vector for gene delivery into motor neuron-like cells. In initial experiments on the motor neuron cell line NSC-19 using a recombinant AAV vector expressing the reporter gene β-galactosidase (AAV-LacZ), we successfully demonstrate the utility of AAV for gene transfer. In addition, a recombinant AAV vector expressing GDNF was shown to express and secrete high levels of the neurotrophic factor into the surrounding media of NSC-19 infected cells. Finally, the AAV-GDNF vector is demonstrated to act in a neuroprotective fashion. Withdrawal of trophic support from NSC-19 cells through serum deprivation results in a subsequent increase in the number of cells entering apoptosis. However, the percentage of apoptotic cells are significantly reduced in cells infected with the AAV-GDNF vector, as compared to AAV-LacZ or uninfected controls. This work demonstrates the potential of using AAV as a vector in motor neuron-like cells and should prove important in devising future gene therapy strategies for the treatment of in vivo motor neuron disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebischer P, Kato AC (1995). Treatment of amyotrophic lateral sclerosis using a gene therapy approach. Eur Neurol 35: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JS, Samulski RJ, McCown TJ (1998). Selective and rapid uptake of adeno-associated virus type 2 in brain. Human Gene Ther 9: 1181–1186.

    Article  CAS  Google Scholar 

  • Bilak MM, Shifrin DA, Corse AM, Bilak SR, Kuncl RW (1999). Neuroprotective utility and neurotrophic action of neurturin in postnatal motor neurons: Comparison with GDNF and persephin. Mol Cell Neurosci 13: 326–336.

    Article  CAS  PubMed  Google Scholar 

  • Byrnes AP, Rusby JE, Wood MJA, Charlton HM (1995). Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66: 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  • Cashman NR, Durham HD, Blusztajn JB, ODA K, Tabira T, Shaw IT, Dahrouge S, Antel JP (1992). Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Devel Dynam 194: 209–221.

    CAS  Google Scholar 

  • Corse AM, Bilak MM, Bilak SR, Lehar M, Rothstein JD, Kuncl RW (1999). Preclinical testing of neuroprotective neurotrophic factors in a model of chronic motor neuron degeneration. Neurobiol Dis 6: 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Du B, Wu P, Boldt-Houle DM, Terwilligier EF (1996). Efficient transduction of human neurons with an adeno-associated virus vector. Gene Ther 3: 254–261.

    CAS  PubMed  Google Scholar 

  • Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiovaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M, Sariola H, Pachnis V (1996). GDNF signalling through the ret receptor tyrosine kinase. Nature 381: 789–793.

    Article  CAS  PubMed  Google Scholar 

  • Haase G, Kennel P, Pettmann B, Vigne E, Akli S, Revah F, Schmalbruch H, Kahn A (1997). Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat Med 3: 429–436.

    Article  CAS  PubMed  Google Scholar 

  • Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis J-C, Hu S, Altrock BW, Fox GM (1996). GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNF-α, a novel receptor for GDNF. Cell 85: 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, During MJ (1994). Long term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Gen 8: 148–154.

    Article  CAS  Google Scholar 

  • Keir SD, House SB, Li J, Xiao X, Gainer H (1999). Gene transfer into hypothalamic organotypic cultures using an adeno-associated virus vector. Exp Neurol 160: 313–316.

    Article  CAS  PubMed  Google Scholar 

  • Keir SD, Miller J, Yu G, Hamilton R, Samulski RJ, Xiao X, Tornatore C (1997). Efficient gene transfer into primary and immortalized human fetal glial cells using adeno-associated virus vectors: Establishment of a glial cell line with a functional CD4 receptor. J Neuro Virol 3: 322–330.

    CAS  Google Scholar 

  • Keir SD, Mitchell WJ, Feldman LT, Martin JR (1995). Targeting and gene expression in spinal cord motor neurons following intramuscular inoculation of an HSV-1 vector. J NeuroVirol 1: 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Pedersen WA, Cashman NR, Mattson MP, Gabbita SP, Friebe V, Markesbery WR (1999). Opposing actions of native and oxidized lipoprotein on motor neuron-like cells. Exp Neurol 57: 202–210.

    Article  Google Scholar 

  • Le Gal La Salle G, Robert JJ, Berrard S, Ridoux V, Stratford-Perricaudet M, Mallet J (1993). An adeno virus vector for gene transfer into neurons and glia in the brain. Science 259: 988–990.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wu W, Lin LH, Lei M, Oppenheim RW, Houenou (1992). Rescue of adult mouse motoneurons from injury induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci USA 92: 9771–9775.

    Article  Google Scholar 

  • McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ (1996). Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713: 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Monahan PE, Samulski RJ (2000). AAV vectors: Is clinical success on the horizon? Gene Ther 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary MT, Charlton HM (1999). A model for long-term transgene expression in spinal cord regeneration studies. Gene Tiler 6: 1351–1359.

    Article  Google Scholar 

  • Oppenheim RW, Houenou LJ, Johnson JE, Lin L-F, Li L, Lo AC, Newsome A, Prevette DM, Wang S (1995). Developing motor neurons rescued from programmed and axotomy induced cell death by GDNF. Nature 373: 344–346.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen WA, Cashman NR, Mattson MP (1999). The lipid peroxidation product 4 hydroxynonenal impairs glutamate and glucose transport and choline acetyl-transferase activity in NSC-19 motor neuron cells. Exp Neurol 155: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N, Reier PJ (1997). Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type specific promoters. Gene Ther 4: 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A (1999). Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ (1999). Science, medicine and the future: Motor neuron disease. BMJ 318: 1118–1121.

    CAS  PubMed  Google Scholar 

  • Summerford C, Bartlett JS, Samulski RJ (1999). αVβ5 integrin: A co-receptor for adeno associated virus type 2 infection. Nat Med 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Summerford C, Samulski RJ (1998). Membrane associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72: 1438–1445.

    CAS  PubMed  Google Scholar 

  • Treanor JJ, Goodman L, de Sauvage F, Stone D, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996). Characterization of a multicomponent receptor for GDNF. Nature 382: 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Wood MJA, Byrnes AP, Pfaff DW, Rabkin SD (1994). Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors. Gene Ther 1: 283–291.

    CAS  PubMed  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1998). Production of high titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72: 2224–2232.

    CAS  PubMed  Google Scholar 

  • Yan Q, Matheson C, Lopez OT (1995). In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Yuen EC, Mobley WC (1996). Therapeutic potential of neurotrophic factors for Neurological disorders. Ann Neurol 40: 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Zurn AD, Baetge EE, Hammang JP, Tan SA, Aebischer P (1994). Glial cell line derived neurotrophic factor; a new neurotrophic factor for motoneurons. Neuro Report 6: 113–118.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart D. Keir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keir, S.D., Xiao, X., Li, J. et al. Adeno-associated virus-mediated delivery of glial cell line-derived neurotrophic factor protects motor neuron-like cells from apoptosis. Journal of NeuroVirology 7, 437–446 (2001). https://doi.org/10.1080/135502801753170291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/135502801753170291

Keywords

Navigation