Skip to main content
Log in

An evolutionary strategy for multiobjective reinsurance optimization

  • Published:
Journal of the Operational Research Society

Abstract

In this work we tackle a multiobjective reinsurance optimization problem (MOROP) from the point of view of an insurance company. The MOROP seeks to find a reinsurance program that optimizes two conflicting objectives: the maximization of the expected value of the profit of the company and the minimization of the risk of the insurance losses retained by the company. To calculate these two objectives we built a probabilistic model of the portfolio of risks of the company. This model is embedded within an evolutionary strategy (ES) that approximates the efficient frontier of the MOROP using a combination of four classical reinsurance structures: surplus, quota share, excess-of-loss and stop-loss. Computational experiments with the risks of a specific line of business of a large Colombian general insurance company show that the proposed evolutionary strategy outperforms the classical non-dominated sorting genetic algorithm. Moreover, the analysis of the solutions in the efficient frontier obtained with our ES gave several insights to the company in terms of the structure and properties of the solutions for different risk-return trade-offs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arrow KJ (1974). Optimal insurance and generalized deductibles. Scandinavian Actuarial Journal 1974(1):1–42.

    Article  Google Scholar 

  • Avanzi B, Taylor G and Wong B (2016). Correlations between insurance lines of business: An illusion or a real phenomenon? Some methodological considerations. ASTIN Bulletin 46(2):225–263.

    Article  Google Scholar 

  • Balbás A, Balbás B, Balbás R and Heras A (2015). Optimal reinsurance under risk and uncertainty. Insurance: Mathematics and Economics 60:61–74.

    Google Scholar 

  • Beyer H-G and Schwefel H-P (2002). Evolution strategies. Natural Computing 1(1):3–52.

    Article  Google Scholar 

  • Borch, K. (1969). The optimal reinsurance treaty. Astin Bulletin, 5(2):293–297.

    Article  Google Scholar 

  • Brown L, Beria AA, Carmona Cortes OA, Rau-chaplin A, Wilson D and Burke N (2014). Parallel MO-PBIL: Computing Pareto optimal frontiers efficiently with applications in reinsurance analytics. In: International Conference on High Performance Computing & Simulation (HPCS) (pp. 766–775). IEEE.

  • Carmona Cortes OA and Rau-Chaplin A (2015). A modified multi-objective DE algorithm with application in reinsurance analytics. In: Klemas T and Chan S (eds). Fourth International Conference on Data Analytics (pp. 51–58). IARIA.

  • Carmona Cortes OA, Rau-Chaplin A and do Prado PF (2014a). On VEPSO and VEDE for solving a treaty optimization problem. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (pp. 2427–2432). IEEE.

  • Carmona Cortes OA, Rau-Chaplin A, Wilson D and Gaiser-Porter J (2013). Efficient optimization of reinsurance contracts using discretized PBIL. In: Laux F (ed). Second International Conference on Data Analytics (pp. 18–24). IARIA.

  • Carmona Cortes OA, Rau-Chaplin A, Wilson D and Gaiser-Porter J (2014b). On PBIL, DE and PSO for optimization of reinsurance contracts. In: Esparcia-Alcázar AI and Mora AM (eds.) Applications of Evolutionary Computation, Volume Lecture Notes in Computer Science 8602 (pp. 227–238). Berlin: Springer.

  • Centeno MdL (2004). Retention and reinsurance programmes. In: Teugels J and Sundt B (eds.) Encyclopedia of Actuarial Science (Vol. 3, pp. 1443–1452). Wiley.

  • Centeno MdL and Simões O (2009). Optimal reinsurance. RACSAM—Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 103(2):387–404.

    Article  Google Scholar 

  • Coello C CA (2011). Evolutionary multiobjective optimization. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(5):444–447.

  • Deb K (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2):311–338.

    Article  Google Scholar 

  • Deb K and Agrawal RB (1994). Simulated binary crossover for continuous search space. Complex Systems 9(3):1–15.

    Google Scholar 

  • Deb K, Mohan M and Mishra S (2003). A Fast Multi-objective Evolutionary Algorithm for Finding Well-spread Pareto-Optimal Solutions. Technical Report KanGAL 2003002, lndian Institute Of Technology Kanpur.

  • Deb K, Pratap A, Agarwal S and Meyarivan T (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2):182–197.

    Article  Google Scholar 

  • Deelstra G and Plantin G (2013). Risk Theory and Reinsurance. EAA Series. London: Springer.

  • Denuit M, Dhaene J, Goovaerts M and Kaas R (2006). Actuarial Theory for Dependent Risks: Measures, Orders and Models. New York: Wiley.

  • Durillo JJ and Nebro AJ (2011). jmetal: A java framework for multi-objective optimization. Advances in Engineering Software 42(10):760–771.

    Article  Google Scholar 

  • Ehrgott M (2006). Multicriteria Optimization. Berlin: Springer.

  • Embrechts P and Frei M (2008). Panjer recursion versus FFT for compound distributions. Mathematical Methods of Operations Research 69(3):497–508.

    Article  Google Scholar 

  • Fleischer M (2003). The measure of Pareto optima applications to multi-objective metaheuristics. In: International Conference on Evolutionary Multi-criterion Optimization (pp. 519–533). Berlin: Springer.

  • Gajek L and Zagrodny D (2000). Insurerś optimal reinsurance strategies. Insurance: Mathematics and Economics 27(1):105–112.

    Google Scholar 

  • Gajek L and Zagrodny D (2004). Optimal reinsurance under general risk measures. Insurance: Mathematics and Economics 34(2):227–240.

    Google Scholar 

  • Gerber HU (1979). An Introduction to Mathematical Risk Theory. S.S. Huebner Foundation Monograph Series. S. S. Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania.

  • Gerber HU (1982). On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums. Insurance: Mathematics and Economics 1(1):13–18.

    Google Scholar 

  • Hardy MR (2006). An introduction to risk measures for actuarial applications. SOA Syllabus Study Note.

  • Hossack I, Pollard J and Zehnwirth B (1999). Introductory Statistics with Applications in General Insurance. Cambridge: Cambridge University Press.

  • Jankauskas L and McLafferty S (1996). Bestfit, distribution-fitting software by palisade corporation. In Proceedings of the 28th Conference on Winter Simulation, WSC ’96 (pp. 551–555). Washington, DC, USA: IEEE Computer Society.

  • Jaszkiewicz A (2004). Evaluation of multiple objective metaheuristics. In: Gandibleux X, Sevaux M, Sörensen K, T'Kindt V (eds.) Metaheuristics for Multiobjective Optimisation (pp. 65–89). Berlin: Springer.

    Chapter  Google Scholar 

  • Kaluszka M (2001). Optimal reinsurance under mean–variance premium principles. Insurance: Mathematics and Economics 28(1):61–67.

    Google Scholar 

  • Kaluszka M (2004). Mean–variance optimal reinsurance arrangements. Scandinavian Actuarial Journal 2004(1):28–41.

    Article  Google Scholar 

  • Knowles J and Corne D (1999). The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation (pp. 98–105). IEEE.

  • Markowitz H (1952). Portfolio selection. Journal of Finance 7(1):77–91.

    Google Scholar 

  • Metaxiotis K and Liagkouras K (2012). Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review. Expert Systems with Applications 39(14):11685–11698.

    Article  Google Scholar 

  • Mitschele A, Oesterreicher I, Schlottmann F and Seese D (2007). Heuristic optimization of reinsurance programs and implications for reinsurance. In: Waldmann K-H and Stocker UM (eds.) Operations Research Proceedings 2006 (pp. 287–292). Berlin: Springer.

  • Oesterreicher I, Mitschele A, Schlottmann F and Seese D (2006). Comparison of multi-objective evolutionary algorithms in optimizing combinations of reinsurance contracts. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation—GECCO ’06 (pp. 747–748).

  • Ponsich A, Jaimes AL and Coello CCA (2013). A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Transactions on Evolutionary Computation 17(3):321–344.

    Article  Google Scholar 

  • Robertson JP (1992). The computation of aggregate loss distributions. Proceedings of the Casualty Actuarial Society LXXIX(150):57–133.

    Google Scholar 

  • Salcedo-Sanz S, Carro-Calvo L, Claramunt M, Castañer A. and Mármol M (2014). Effectively tackling reinsurance problems by using evolutionary and swarm intelligence algorithms. Risks 2(2):132–145.

    Article  Google Scholar 

  • Scott J (1995). Fault Tolerant Design Using Single and Multi-criteria Genetic Algorithms. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology.

  • Simões O and Centeno MdL (2008). Reinsurance. In: Melnick EL and Everitt BS (eds.) Encyclopedia of Quantitative Risk Analysis and Assessment (pp. 1425–1428). Wiley.

  • Tan KS and Weng C (2011). Enhancing insurer value using reinsurance and value-at-risk criterion. The Geneva Risk and Insurance Review 37(1):109–140.

    Article  Google Scholar 

  • Verlaak R and Beirlant J (2003). Optimal reinsurance programs. an optimal combination of several reinsurance protections on a heterogeneous insurance portfolio. Insurance: Mathematics and Economics 33(2):381–403.

    Google Scholar 

  • Vilar JL (2000). Arithmetization of distributions and linear goal programming. Insurance: Mathematics and Economics 27(1):113–122.

    Google Scholar 

  • Zitzler E and Thiele L (1998). Multiobjective optimization using evolutionary algorithms—A comparative case study. In: International Conference on Parallel Problem Solving from Nature (pp. 292–301). Berlin: Springer.

Download references

Acknowledgements

Andrés M. Villegas acknowledges support by the Australian Research Council Centre of Excellence in Population Ageing Research (project number CE110001029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan G. Villegas.

Appendix A: Evaluation of the objective functions

Appendix A: Evaluation of the objective functions

In this appendix we describe the numerical approach used to evaluate the objective functions \(f_1\) and \(f_2\) for a given reinsurance program \(y=(l,a,p,s)\).

1.1 A.1 Distribution functions involved in the evaluation of the objective functions

In addition to the random variables N, X, K, Z, \(\overline{X}^{({\mathrm{SP}})}\), \(\overline{X}^{({\mathrm{QS}})}\), \(\overline{X}^{({\mathrm{XL}})}\), \(\underline{X}^{({\mathrm{LR}})}\), \(\overline{S}^{({\mathrm{SP}})}\), \(\overline{S}^{({\mathrm{QS}})}\), \(\overline{S}^{({\mathrm{XL}})}\), \(\underline{S}^{({\mathrm{LR}})}\), \(\overline{S}^{({\mathrm{SL}})}\), and \(\underline{S}\) introduced previously in Section 4.3, let us define the random variables

$$ \underline{X}^{({\mathrm{SP}})} = \min (l,K)Z, $$
(19)

and

$$ \underline{X}^{({\mathrm{PR}})} = a\min (l,K)Z, $$
(20)

representing, respectively, the portion of claim X retained by the insurer after the coverage of the surplus reinsurance and the portion of claim X retained by the insurer after the coverage of the two proportional reinsurance treaties (i.e., after surplus and quota share).

With these definitions it is easy to see that the following equalities hold:

$$ E\left( \overline{S}^{({\mathrm{SP}})}\right)= E(N)E\left( \overline{X}^{({\mathrm{SP}})}\right) = E(N)\left[ E(X)-E\left( \underline{X}^{({\mathrm{SP}})}\right) \right] $$
(21)
$$ E\left( \overline{S}^{({\mathrm{QS}})}\right)= E(N)E\left( \overline{X}^{({\mathrm{QS}})}\right) = E(N)\left[ E\left( \underline{X}^{({\mathrm{SP}})}\right) -E\left( \underline{X}^{({\mathrm{PR}})}\right) \right] $$
(22)
$$ E\left( \overline{S}^{({\mathrm{XL}})}\right)= E(N)E\left( \overline{X}^{({\mathrm{XL}})}\right) = E(N)\left[ E\left( \underline{X}^{({\mathrm{PR}})}\right) -E\left( \underline{X}^{({\mathrm{LR}})}\right) \right] $$
(23)
$$ E\left( \overline{S}^{({\mathrm{SL}})}\right)= E\left( \underline{S}^{({\mathrm{LR}})}\right) -E\left( \underline{S}\right) . $$
(24)

Using these four equalities the first objective function in problem (16) can be rewritten as

$$ \begin{aligned} f_1(l,a,p,r)&= E(N)\Big [\lambda _{{\mathrm{SR}}}\left( E(X)-E\left( \underline{X}^{({\mathrm{SP}})}\right) \right) + \lambda _{{\mathrm{SR}}}\left( E\left( \underline{X}^{({\mathrm{SP}})}\right) -E\left( \underline{X}^{({\mathrm{PR}})}\right) \right) \nonumber \\ &\quad+ \lambda _{{\mathrm{XL}}}\left( E\left( \underline{X}^{({\mathrm{PR}})}\right) -E\left( \underline{X}^{({\mathrm{LR}})}\right) \right) \Big ] + \lambda _{{\mathrm{SL}}}\left( E\left( \underline{S}^{({\mathrm{LR}})}\right) -E\left( \underline{S}\right) \right) .\end{aligned} $$
(25)

From this last equation and Equation (15) we see that the evaluation of the objective functions \(f_1\) and \(f_2\) requires the calculation of statistics of random variables X, \(\underline{X}^{({\mathrm{SP}})}\), \(\underline{X}^{({\mathrm{PR}})}\), \(\underline{X}^{({\mathrm{LR}})}\), \(\underline{S}^{({\mathrm{LR}})}\) and \(\underline{S}\). Therefore, to evaluate the objective functions we need to derive the distribution functions of these random variable in terms of the distribution functions \(P_N(n)\), \(F_K(k)\) and \(F_Z(z)\), which characterize the losses of the insurance portfolio.

The corresponding expressions for the required distribution functions are shown in the second column of Table 4. In this table, we note that \(f_Y(y)\) denotes the density of a general continuous random variable Y with distribution function \(F_Y(y)\). Similarly, if Y is a discrete random variable with distribution function \(P_Y(y)\), then \(p_Y(y)\) denotes its corresponding probability mass function. Furthermore, the notation \(F^{*j}\) denotes the j-fold convolution of function F with itself.

Table 4 Distribution functions of the random variables involved in the computation of the objective functions

1.2 A.2 Discretization of the distribution functions

Several of the distribution functions in Table 4 involve integrals over K, and hence, the first step in the numerical evaluation of the objective functions entails the discretization of its distribution function, \(F_K(k)\). We discretize \(F_K(k)\) at points \([k_0,k_1,k_2, \ldots ,k_{n_k-1}] = [m_k, m_k + \delta _k,m_k + 2\delta _k, \ldots , M_k]\), using the so-called rounding method (Embrechts and Frei 2008) so that the equivalent (discrete) probability mass function, \(p_K(k)\), is given by:

$$ p_K(k_0)= F_K\left(m_k+\frac{\delta _k}{2}\right) $$
(26)
$$ p_K(k_i)= F_K(m_k+i\delta _k + \frac{\delta _k}{2})-F_K\left(m_k+i\delta _k - \frac{\delta _k}{2}\right), \quad i = 1, \ldots , n_k-2 $$
(27)
$$ p_K(k_{n_k-1})= 1-F_K\left(M_k- \frac{\delta _k}{2}\right), $$
(28)

where \(\delta _k\) is the discretization step and \(m_k\) and \(M_k = m_k + (n_k-1)\delta _k\) are the minimum and maximum discretization values. Although alternative discretization (arithmetization) approaches, such as the local moment matching method (Gerber, 1982) or the nearest second moment method (Vilar 2000), are possible, the rounding method has shown to produce satisfactory results in our application.

The second step involves the computation of discrete equivalents of the distributions functions of X, \(\underline{X}^{({\mathrm{SP}})}\), \(\underline{X}^{({\mathrm{PR}})}\), \(\underline{X}^{({\mathrm{LR}})}\), \(\underline{S}^{({\mathrm{LR}})}\) and \(\underline{S}\). To facilitate this computation, its convenient to use a common discretization grid \([x_0,x_1,x_2, \ldots ,x_{n_x-1}] = [m_x, m_x + \delta _x,m_x + 2\delta _x, \ldots , M_x]\), where \(n_x=2^r\) with integer r; \(\delta _x\) is the discretization step; and \(m_x\) and \(M_x = m_x + (n_x-1)\delta _x\) are the minimum and maximum discretization values.

With this discretization grid, we can compute the equivalent (discrete) probability mass functions for X, \(p_X(x)\), as follows:

$$ p_X(x_0)= \hat{F}_X\left(m_x+\frac{\delta _X}{2}\right) $$
(29)
$$ p_X(x_j)= \hat{F}_X\left(m_x+j\delta _x + \frac{\delta _x}{2}\right)-\hat{F}_X\left(m_x+j\delta _x - \frac{\delta _x}{2}\right), \quad j = 1, \ldots , n_x-2 $$
(30)
$$ p_X(x_{n_x-1})= 1-\hat{F}_X\left(M_x- \frac{\delta _x}{2}\right), $$
(31)

where \(\hat{F}_X(x) = \sum _{i=0}^{n_k-1} F_{Z}\left( \frac{x}{k_i}\right) p_{K}(k_i)\) is the numerical approximation of \(F_X(x)\). We can analogously compute the equivalent (discrete) probability mass functions \(p_{\underline{X}^{({\mathrm{SP}})}}(x)\), \(p_{\underline{X}^{({\mathrm{PR}})}}(x)\), \(p_{\underline{X}^{({\mathrm{LR}})}}(x)\), and \(p_{\underline{S}}(x)\), using the numerically approximated distributions \(\hat{F}_{\underline{X}^{({\mathrm{SP}})}}(x)\), \(\hat{F}_{\underline{X}^{({\mathrm{PR}})}}(x)\), \(\hat{F}_{\underline{X}^{({\mathrm{LR}})}}(x)\), and \(\hat{F}_{\underline{S}}(x)\), given in Column 3 of Table 4. In these approximations, we note that \(u_l = \min \{ i \in \{0,1,\ldots ,n_k-1\}: k_i > l\}\), \(P_K(k_{u_l})= \sum _{i=0}^{u_l} p_K(k_{i})\), \(x_p = \min \{ x_j \in \{0,1,\ldots ,n_x-1\}: x_j > p\}\) and \(x_r = \min \{ x_j \in \{0,1,\ldots ,n_x-1\}: x_j > r\}\).

The distribution function of \(\underline{S}^{({\mathrm{LR}})}\), \(F_{\underline{S}^{({\mathrm{LR}})}}(x)\), involves the iterated convolution of the distribution function of \(\underline{X}^{({\mathrm{LR}})}\), \(F_{\underline{X}^{({\mathrm{LR}})}}(x)\). Therefore, we resort to the fast Fourier transform (FFT) (as discussed in Robertson, 1992) to efficiently discretize \(\underline{S}^{({\mathrm{LR}})}\). Specifically, we apply the FFT to calculate the (discrete) probability mass functions, \(p_{\underline{S}^{({\mathrm{LR}})}}(x)\), and then compute the approximated distribution function, \(\hat{F}_{\underline{S}^{({\mathrm{LR}})}}(x)\), as follows:

$$\begin{aligned}&\hat{F}_{\underline{S}^{({\mathrm{LR}})}}(x_j) = \sum \limits _{h=0}^j p_{\underline{S}^{({\mathrm{LR}})}}(x_h), \quad j = 0, \ldots , n_x-2\nonumber \\&\quad \hat{F}_{\underline{S}^{({\mathrm{LR}})}}(M_x) = 1. \end{aligned}$$
(32)

1.3 A.3 Numerical evaluation of the objective functions

Given the discrete probability mass functions \(p_{X}(x)\), \(p_{\underline{X}^{({\mathrm{SP}})}}(x)\), \(p_{\underline{X}^{({\mathrm{PR}})}}(x)\), \(p_{\underline{X}^{({\mathrm{LR}})}}(x)\), \(p_{\underline{S}^{({\mathrm{LR}})}}(x)\), and \(p_{\underline{S}}(x)\), it is now straightforward to evaluate the objective functions \(f_1\) and \(f_2\).

We evaluate \(f_1\) using Equation (25) with the expected values of X, \(\underline{X}^{({\mathrm{SP}})}\), \(\underline{X}^{({\mathrm{PR}})}\), \(\underline{X}^{({\mathrm{LR}})}\), \(\underline{S}^{({\mathrm{LR}})}\) and \(\underline{S}\) computed using the corresponding probability mass functions. For example, the expected value of X is computed as \(E(X)=\sum _{j=0}^{n_x-1}x_jp_{X}(x_j)\). The other expected values are computed in a similar manner.

The numerical evaluation of \(f_2\) depends on the measure of risk, \(\rho \), used in the optimization problem. In particular, the numerical expression for the VaR at level \(\alpha \) is given by (c.f. Equation (15))

$$ {\mathrm{VaR}}_{\alpha }(\underline{S})= x_{u_{\alpha }} , $$
(33)

where the subindex \(u_{\alpha } = \min \{ j \in \{0,1,\ldots ,n_x-1\}: \hat{F}_{\underline{S}}(x_{j}) \ge \alpha \}\) is found using a binary search over the table of all the possible values of \(\hat{F}_{\underline{S}}(x)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román, S., Villegas, A.M. & Villegas, J.G. An evolutionary strategy for multiobjective reinsurance optimization. J Oper Res Soc (2017). https://doi.org/10.1057/s41274-017-0210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1057/s41274-017-0210-y

Keywords

Navigation