Skip to main content
Log in

Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Studies have previously shown that anthracene and naphthalene derivatives serve as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. Simple and efficient synthetic routes to anthracene and naphthalene derivatives are needed, for improved capture and release of O2(1Δg) in cellular environments. Because of this need, we have synthesized a dihydroxypropyl amide naphthlene endoperoxide as a O2(1Δg) donor, as well as five anthracene derivatives as O2(1Δg) acceptor. The anthracene derivatives bear dihydroxypropyl amide, ester, and sulfonate ion end groups connected to 9,10-positions by way of unsaturated (vinyl) and saturated (ethyl) bridging groups. Heck reactions were found to yield these six compounds in easy-to-carry out 3-step reactions in yields of 50-76%. Preliminary results point to the potential of the anthracene compounds to serve as O2(1Δg) acceptors and would be amenable for future use in biological systems to expand the understanding of O2(1Δg) in biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. P. Di Mascio, G. R. Martinez, S. Miyamoto, G. E. Ronsein, M. H. G. Medeiros and J. Cadet, Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins, Chem. Rev. 2019 119 2043–2086

    Article  PubMed  CAS  Google Scholar 

  2. O. Chiarelli-Neto, A. S. Ferreira, W. K. Martins, C. Pavani, D. Severino, F. Faião-Flores, S. S. Maria-Engler, E. Aliprandini, G. R. Martinez, P. Di Mascio, M. H. G. Medeiros and M. S. Baptista, Melanin photosensitization and the effect of visible light on epithelial cells, PLoS One 2014 9(11) e113266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. M. J. Beltrán-García, F. M. Prado, M. S. Oliveira, D. Ortiz-Mendoza, A. C. Scalfo, A. Pessoa Jr., M. H. G. Medeiros, J. F. White and P. Di Mascio, Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis, in black Sigatoka disease of bananas, PLoS One 2014 9(3) e91616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. J.-L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio and J. Cadet, Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen, Arch. Biochem. Biophys. 2004 423 23–30

    Article  CAS  PubMed  Google Scholar 

  5. G. E. Ronsein, F. M. Prado, F. V. Mansano, M. C. B. Oliveira, M. H. G. Medeiros, S. Miyamoto and P. Di Mascio, Detection and characterization of cholesterol-oxidized products using HPLC coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry, Anal. Chem. 2010 82 7293–7301

    Article  CAS  PubMed  Google Scholar 

  6. F. V. Mansano, R. M. A. Kazaoka, G. E. Ronsein, F. M. Prado, T. C. Genaro-Mattos, M. Uemi, P. Di Mascio and S. Miyamoto, Highly sensitive fluorescent method for the detection of cholesterol aldehydes formed by ozone and singlet molecular oxygen, Anal. Chem. 2010 82 6675–6781

    Article  CAS  Google Scholar 

  7. V. Duarte, D. Gasparutto, L. F. Yamaguchi, J.-L. Ravanat, G. R. Martinez, M. H. G. Medeiros, P. Di Mascio and J. Cadet, Oxaluric acid as the major product of singlet oxygen-mediated oxidation of 8-Oxo-7,8-dihydroguanine in DNA, J. Am. Chem. Soc. 2000 122 12622–12628

    Article  CAS  Google Scholar 

  8. E. L. Clennan and A. Pace, Advances in singlet oxygen chemistry, Tetrahedron 2005 61 6665–6691

    Article  CAS  Google Scholar 

  9. J. M. Aubry and B. Cazin, Chemical sources of singlet oxygen. quantitative generation of singlet oxygen from hydrogen-peroxide disproportionation catalyzed by molybdate Ions, Inorg. Chem. 1988 27 2013–2014

    Article  CAS  Google Scholar 

  10. A. E. Cahill and H. Taube, The use of heavy oxygen in the study of reactions of hydrogen peroxide, J. Am. Chem. Soc. 1952 74 2312–2318

    Article  CAS  Google Scholar 

  11. H. Sies, Oxidative stress: oxidants and antioxidants, Academic Press, London, 1991

    Google Scholar 

  12. H. Sies, Oxidative stress: eustress and distress, Academic Press, London, 2020

    Google Scholar 

  13. J. Cadet and P. Di Mascio, Peroxides in biological systems, in Patai’s chemistry of functional groups, John Wiley & Sons, Ltd, Chichester, 2006

    Google Scholar 

  14. C. M. Mano, F. M. Prado, J. Massari, G. E. Ronsein, G. R. Martinez, S. Miyamoto, J. Cadet, H. Sies, M. H. G. Medeiros, E. J. H. Bechara and P. Di Mascio, Excited singlet molecular O2 (1Δg) is generated enzymatically from excited carbonyls in the dark, Sci. Rep. 2014 4 5938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. P. Stanley, G. J. Maghzal, A. Ayer, J. Talib, A. M. Giltrap, S. Shengule, K. Wolhuter, Y. T. Wang, P. Chadha, C. Suarna, O. Prysyazhna, J. Scotcher, L. L. Dunn, F. M. Prado, N. Nguyen, J. O. Odiba, J. B. Baell, J. P. Stasch, Y. Yamamoto, P. Di Mascio, P. Eaton, R. J. Payne and R. Stocker, Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation, Nature 2019 566 548–552

    Article  CAS  PubMed  Google Scholar 

  16. S. Miyamoto, G. E. Ronsein, T. C. Correa, G. R. Martinez, M. H. G. Medeiros and P. Di Mascio, Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite, Dalton Trans. 2009 29 5720–5729

    Article  CAS  Google Scholar 

  17. S. Miyamoto, G. R. Martinez, M. H. G. Medeiros and P. Di Mascio, Singlet molecular oxygen generated by biological hydroperoxides, J. Photochem. Photobiol., B 2014 139 24–33

    Article  CAS  Google Scholar 

  18. F. M. Prado, M. C. B. Oliveira, S. Miyamoto, G. R. Martinez, M. H. G. Medeiros, G. E. Ronsein and P. Di Mascio, Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA, Free Radical Biol. Med. 2009 47 401–409

    Article  CAS  Google Scholar 

  19. S. Miyamoto, G. R. Martinez, M. H. G. Medeiros and P. Di Mascio, Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements, J. Am. Chem. Soc. 2003 125 6172–6179

    Article  CAS  PubMed  Google Scholar 

  20. S. Miyamoto, G. R. Martinez, A. P. Martins, M. H. G. Medeiros and P. Di Mascio, Direct evidence of singlet molecular oxygen [O2(1Δg)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite, J. Am. Chem. Soc. 2003 125 4510–4517

    Article  CAS  PubMed  Google Scholar 

  21. S. Miyamoto, G. R. Martinez, D. Rettori, O. Augusto, M. H. G. Medeiros and P. Di Mascio, Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen, Proc. Natl. Acad. Sci. U. S. A. 2006 103 293–298

    Article  CAS  PubMed  Google Scholar 

  22. M. Uemi, G. E. Ronsein, F. M. Prado, F. D. Motta, S. Miyamoto, M. H. G. Medeiros and P. Di Mascio, Cholesterol hydroperoxides generate singlet molecular oxygen [O2 (1Δg)]: near-IR emission, 18O-labeled hydroperoxides and mass spectrometry, Chem. Res. Toxicol. 2011 24 887–895

    Article  CAS  PubMed  Google Scholar 

  23. G. E. Ronsein, M. C. B. Oliveira, S. Miyamoto, M. H. G. Medeiros and P. Di Mascio, Tryptophan oxidation by singlet molecular oxygen [O2 (1Δg)]: Mechanistic studies using O-18-labeled hydroperoxides, mass spectrometry, and light emission measurements, Chem. Res. Toxicol. 2008 21 1271–1283

    Article  CAS  PubMed  Google Scholar 

  24. G. E. Ronsein, M. C. B. Oliveira, M. H. G. Medeiros and P. Di Mascio, Characterization of [O2 (1Δg)]-derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies, J. Am. Soc. Mass Spectrom. 2009 20 188–197

    Article  CAS  PubMed  Google Scholar 

  25. P. Di Mascio, A. R. Sundquist, T. P. A. Devasagayam and H. Sies, Assay of lycopene and other carotenoids as singlet oxygen quenchers, Methods Enzymol. 1992 213 429–438

    Article  Google Scholar 

  26. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther. 2004 1 279–293

    Article  CAS  Google Scholar 

  27. R. M. Tyrrell, Role for Singlet Oxygen in Biological Effects of Ultraviolet A Radiation, Methods Enzymol. 2000 319 290–296

    Article  CAS  PubMed  Google Scholar 

  28. C. S. Foote, Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems, Science 1968 162 963–970

    Article  CAS  PubMed  Google Scholar 

  29. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol. 1991 54 659

    Article  CAS  PubMed  Google Scholar 

  30. M. S. Baptista, J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura, Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways, Photochem. Photobiol. 2017 93 912–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H. H. Wasserman, K. B. Wiberg, D. L. Larsen and J. Parr, Photooxidation of methylnaphthalenes, J. Org. Chem. 2005 70 105–109

    Article  CAS  PubMed  Google Scholar 

  32. H. H. Wasserman and D. L. Larsen, Formation of 1,4-endoperoxide from the dye-sensitized photooxygenation of alkyl naphthalenes, J. Chem. Soc., Chem. Commun. 1972 5 253–254

    Article  Google Scholar 

  33. C. Pierlot, J.-M. Aubry, K. Briviba, H. Sies and P. Di Mascio, Naphthalene endoperoxides as generators of singlet oxygen in biological media, Methods Enzymol. 2000 319 3–20

    Article  CAS  PubMed  Google Scholar 

  34. C. Pierlot, S. Hajjam, C. Barthelemy and J.-M. Aubry, Water-soluble naphthalene derivatives as singlet oxygen (1O2, 1Δg) carriers for biological media, J. Photochem. Photobiol., B 1996 36 31–39

    Article  CAS  Google Scholar 

  35. A. Dewilde, C. Pellieux, C. Pierlot, P. Wattre and J.-M. Aubry, Inactivation of intracellular and 3,3′-(1,4-Naphthylidene)dipropionate. Monomol and dimol photoemission and the effects of 1,4-diazabicyclo[2.2.2]octane, Biol. Chem. 1998 379 1377

    CAS  PubMed  Google Scholar 

  36. L.-O. Klotz, C. Pellieux, K. Briviba, C. Pierlot, J.-M. Aubry and H. Sies, Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA, Eur. J. Biochem. 1999 260 917–922

    Article  CAS  PubMed  Google Scholar 

  37. G. R. Martinez, J.-L. Ravanat, M. H. G. Medeiros, J. Cadet and P. Di Mascio, Synthesis of a naphthalene endoperoxide as a source of 18O-labeled singlet oxygen for mechanistic studies, J. Am. Chem. Soc. 2000 122 10212–10213

    Article  CAS  Google Scholar 

  38. G. R. Martinez, M. H. G. Medeiros, J.-L. Ravanat, J. Cadet and P. Di Mascio, Naphthalene endoperoxide as a source of [18O]-labeled singlet oxygen for oxidative DNA damage studies, Trends Photochem. Photobiol. 2002 9 25–39

    CAS  Google Scholar 

  39. P. Di Mascio and H. Sies, Quantification of singlet oxygen generated by thermolysis of 3,3′-(1,4-naphthylidene)dipropionate. Monomol and dimol photoemission and the effects of 1,4-diazabicyclo[2.2.2]octane, J. Am. Chem. Soc. 1989 111 2909–2914

    Article  Google Scholar 

  40. C. Pellieux, A. Dewilde, C. Pierlot and J.-M. Aubry, Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides, Methods Enzymol. 2000 319 197–207

    Article  CAS  PubMed  Google Scholar 

  41. J.-M. Aubry, in Membrane Lipid Oxidation, ed. C. Vigo-Pelfrey, CRC Press, Boca Raton, 1991, p. 2

  42. P. Di Mascio, E. J. H. Bechara and J. C. Rubim, Dioxygen NIR FT-Emission (1Δg3Σg) and Raman spectra of 1,4-dimethylnaphthalene endoperoxide: a source of singlet molecular oxygen, Appl. Spectrosc. 1992 46 236–239

    Article  Google Scholar 

  43. M. Shibasaki, E. M. Vogl and T. Ohshima, Asymmetric Heck reaction, Adv. Synth. Catal. 2004 346 1533–1552

    Article  CAS  Google Scholar 

  44. R. F. Heck and J. P. Nolley, Palladium-Catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, J. Org. Chem. 1972 14 2320–2322

    Article  Google Scholar 

  45. W. Fudickar and T. Linker, Why triple bonds protect acenes from oxidation and decomposition, J. Am. Chem. Soc. 2012 134 15071–15082

    Article  CAS  PubMed  Google Scholar 

  46. W. Fudickar and T. Linker, Synthesis of pyridylanthracenes and their reversible reaction with singlet oxygen to endoperoxides, J. Org. Chem. 2017 82 9258–9262

    Article  CAS  PubMed  Google Scholar 

  47. W. Fudickar and T. Linker, Release of singlet oxygen from aromatic endoperoxides by chemical triggers, Angew. Chem., Int. Ed. 2018 57 12971–12975

    Article  CAS  Google Scholar 

  48. C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker, Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green, J. Exp. Bot. 2006 57 1725–1734

    Article  CAS  PubMed  Google Scholar 

  49. N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi and T. Nagano, Novel fluorescent probes for singlet oxygen, Angew. Chem., Int. Ed. 1999 38 19

    Article  Google Scholar 

  50. K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi and T. Nagano, Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen, J. Am. Chem. Soc. 2001 123 2530–2536

    Article  CAS  PubMed  Google Scholar 

  51. M. S. Oliveira, D. Severino, F. M. Prado, J. P. F. Angeli, F. D. Motta, M. S. Baptista, M. H. G. Medeiros and P. Di Mascio, Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3′-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction, Photochem. Photobiol. Sci. 2011 10 1546–1555

    Article  CAS  PubMed  Google Scholar 

  52. D. Kessel and M. Price, Evaluation of diethyl-3-3′-(9,10-anthracenediyl)bis acrylate as a probe for singlet oxygen formation during photodynamic therapy, Photochem. Photobiol. 2012 88 717–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Price and D. Kessel, On the use of fluorescence probes for detecting reactive oxygen and nitrogen species associated with photodynamic therapy, J. Biomed. Opt. 2010 15(5) 051605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. A. I. Vogel, in Vogel’s Textbook of Practical Organic Chemistry, revised by B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, John Wiley & Sons, New York, 1989

  55. V. Nardello, J. M. Aubry, P. Johnston, I. Bulduk, A. H. M. Vries and P. L. Alsters, Facile preparation of the water-soluble singlet oxygen traps anthracene-9,10-divinylsulfonate (AVS) and anthracene-9,10-diethylsulfonate (AES) via a heck reaction with vinylsulfonate, Synlett 2005 2667–2669

    Google Scholar 

  56. A. Arcadi, E. Bernocchi, S. Cacchi and F. Marinelli, Palladium-Catalyzed conjugate reduction of α,β-unsaturated carbonyl compounds with potassium formate, Synlett 1991 27–28

    Google Scholar 

  57. S. Rajagopal and A. F. Spatola, Mechanism of palladium-catalyzed transfer hydrogenolysis of aryl chlorides by formate salts, J. Org. Chem. 1995 60 1347–1355

    Article  CAS  Google Scholar 

  58. G. R. Martinez, F. Garcia, L. H. Catalani, J. Cadet, M. C. B. Oliveira, G. E. Ronsein, S. Miyamoto, M. H. G. Medeiros and P. Di Mascio, Synthesis of a hydrophilic and non-ionic anthracene derivative, the N,N′-di-(2,3-dihydroxypropyl)-9,10-anthracenedipropanamide as a chemical trap for singlet molecular oxygen detection in biological systems, Tetrahedron 2006 62 10762–10770

    Article  CAS  Google Scholar 

  59. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Baltimore, Maryland, USA, 3rd edn, 2006, pp. 8–12

    Book  Google Scholar 

  60. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of Photochemistry, Taylor & Francis Group, 3rd edn, 2006, p. 574

    Book  Google Scholar 

  61. F. Wilkinson, W. P. Helman and A. B. Ross, Rates constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solutions. An expanded and revised compilation, J. Phys. Chem. Ref. Data 1995 24 779

    Article  Google Scholar 

  62. A. J. Carrier, S. Hamid, D. Oakley, K. Oakes and X. Zhanga, Singlet oxygen generation in classical fenton chemistry, preprint, ChemRxiv, 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marilene Silva Oliveira or Paolo Di Mascio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.S., Chorociejus, G., Angeli, J.P.F. et al. Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochem Photobiol Sci 19, 1590–1602 (2020). https://doi.org/10.1039/d0pp00153h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00153h

Navigation