Skip to main content
Log in

Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Herein, we synthesized ZnO nanorods using a solvothermal reaction technique at 200 °C for 24 h, and the prepared ZnO nanorods were decorated with silver (Ag) nanoparticles to enhance their photocatalytic activity. The Ag nanoparticles were photochemically deposited on the ZnO rods with varying molar concentrations (from 0.5 to 10 mol%), and their various physicochemical properties were studied. The prepared material was characterised using different spectroscopic techniques. XRD revealed the formation of a highly crystalline hexagonal phase of ZnO. For a higher silver loading (>5 mol%), separate peaks corresponding to cubic silver were observed in the XRD pattern. The photoluminescence spectra of the Ag/ZnO nanostructures show two distinct peaks at 390 and 500 nm; interestingly, the PL intensity of the ZnO emission peak at 500 nm decreases with an increase in the silver concentration. The diffuse reflectance spectra of Ag/ZnO indicate absorbance at 380 nm due to ZnO and a slight hump at 440 nm that corresponds to silver nanoparticles. The FE-SEM and TEM analysis indicates the formation of a hexagonal rodlike morphology, with the lengths of the rods ranging from around 50 to 200 nm and a diameter of around 30 nm. TEM also confirms the presence of Ag nanoparticles with sizes in the range of 20 to 30 nm on the surface of the ZnO nanorods. The photocatalytic activity of the Ag/ZnO nanostructures was evaluated by following the degradation of methylene blue (MB) dye under a 400 W mercury vapour lamp. ZnO with 10 mol% Ag loading shows the highest photocatalytic activity as compared to the 0.5, 1 & 5 mol% Ag-ZnO catalysts. The observed apparent rate constant for the photocatalytic MB degradation using 10 mol% Ag-ZnO (Kapp = 6.01 x 10−2 min−1) was six times that of pure ZnO (Kapp = 1.09 x 10−2 min−1). A gradual increase in the photocatalytic activity of Ag/ZnO was observed with an increase in the silver concentration. The photocurrent response of the prepared Ag-ZnO nanostructures was examined by a photoconductivity study. Moreover, the photocatalytic performance of the sample was correlated with the photoconductivity of the samples. The photoconductivity of the samples was stable, and the photoconductivity of 10 mol% Ag-ZnO was almost 20 times that of pure ZnO, resulting in a higher photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. A. Joshi, A. Palasyuk, D. Arney and P. A. Maggard, Semiconducting oxides to facilitate the conversion of solar energy to chemical fuels, J. Phys. Chem. Lett., 2010, 1, 2719.

    Article  CAS  Google Scholar 

  2. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69.

    Article  CAS  Google Scholar 

  3. X. Chen, S. Shen, L. Guo and S. S. Mao, Semiconductorbased photocatalytic Hydrogen generation, Chem. Rev., 2010, 110, 6503.

    Article  CAS  PubMed  Google Scholar 

  4. W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong and S. P. Chai, Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?, Chem. Rev., 2016, 116, 7159.

    Article  CAS  PubMed  Google Scholar 

  5. S. A. Grinshpun, A. Adhikari, T. Honda, K. Y. Kim, M. Toivola, K. S. Ramchander Rao and T. Reponen, Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation, Environ. Sci. Technol., 2007, 41, 606.

    Article  CAS  PubMed  Google Scholar 

  6. J. Peller, O. Wiest and P. V. Kamat, Hydroxyl radical's role in the remediation of a common herbicide, 2,4-dichlorophe-noxyacetic acid (2,4-D), J. Phys. Chem. A, 2004, 108, 10925.

    Article  CAS  Google Scholar 

  7. Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe and J. Tang, Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems, Chem. Rev., 2018, 118, 5201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Andreozzi, V. Caprio, A. Insola and R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 1999, 53, 51.

    Article  CAS  Google Scholar 

  9. S. N. Frank and A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc., 1977, 99, 303.

    Article  CAS  Google Scholar 

  10. M. Tahir and N. S. Amin, Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges, Renewable Sustainable Energy Rev., 2013, 25, 560.

    Article  CAS  Google Scholar 

  11. L. Linsebigler, G. Lu and J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95, 735.

    Article  CAS  Google Scholar 

  12. S. S. Arbuj, R. R. Hawaldar, U. P. Mulik, B. N. Wani, D. P. Amalnerkar and S. Waghmode, Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation, Mater. Sci. Eng., B, 2010, 168, 90.

    Article  CAS  Google Scholar 

  13. J. Das and D. Khushalani, Nonhydrolytic route for synthesis of ZnO and its use as a recyclable photocatalyst, J. Phys. Chem. C, 2010, 114, 8114.

    Article  CAS  Google Scholar 

  14. S. S. Arbuj, N. Rumale, A. Pokle, J. D. Ambekar, S. B. Rane, U. P. Mulik and D. P. Amalnerkar, Synthesis of photoluminescent ZnO nanopencils and their photocatalytic performance, Sci. Adv. Mater., 2014, 6, 269.

    Article  CAS  Google Scholar 

  15. J. Boltersdorf, T. Wong and P. A. Maggard, Synthesis and optical properties of Ag(z), Pb(n), and Bi(m) Tantalate-based photocatalysts, ACS Catal., 2013, 3, 2943.

    Article  CAS  Google Scholar 

  16. J. Kim, C. W. Lee and W. Choi, Platinized WO3 as an Environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 2010, 44, 6849.

    Article  CAS  PubMed  Google Scholar 

  17. J. S. Jang, K. Y. Yoon, X. Xiao, F. R. F. Fan and A. J. Bard, Development of a Potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: effects of Ag-Fe2O3 nanocomposite and Sn doping, Chem. Mater., 2009, 21, 4803.

    Article  CAS  Google Scholar 

  18. P. Manjula, R. Boppella and S. V. Manorama, A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material, ACS Appl. Mater. Interfaces, 2012, 4, 6252.

    Article  CAS  PubMed  Google Scholar 

  19. S. S. Arbuj, S. R. Bhalerao, S. B. Rane, N. Y. Hebalkar, U. P. Mulik and D. P. Amalnerkar, Influence of triethanolamine on physico-chemical properties of cadmium sulphide, Nanosci. Nanotechnol. Lett., 2013, 5, 1245.

    Article  CAS  Google Scholar 

  20. D. Jing and L. Guo, A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure, J. Phys. Chem. B, 2006, 110, 11139.

    Article  CAS  PubMed  Google Scholar 

  21. J. M. Mali, S. S. Arbuj, J. D. Ambekar, S. B. Rane, U. P. Mulik and D. P. Amalnerkar, Hydrothermal Synthesis of SnS2 Faceted Nano Sheets and Their Visible Light Driven Photocatalytic Performance, Sci. Adv. Mater., 2013, 5, 1994.

    Article  CAS  Google Scholar 

  22. M. A. Fox and M. T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 1993, 93, 341.

    Article  CAS  Google Scholar 

  23. X. Chen and S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 2007, 107, 2891.

    Article  CAS  PubMed  Google Scholar 

  24. S. Kumar, C. L. Chen, C. L. Dong, Y. K. Ho, J. F. Lee, T. S. Chan, R. Thangavel, T. K. Chen, B. H. Mok, S. M. Rao and M. K. Wu, Structural, optical, and magnetic characterization of Co and N co-doped ZnO nanopowders, J. Mater. Sci., 2013, 48, 2618.

    Article  CAS  Google Scholar 

  25. S. Kumar, P. Kaur, C. L. Chen, R. Thangavel, C. L. Dong, Y. K. Ho, J. F. Lee, T. S. Chan, T. K. Chen, B. H. Mok, S. M. Rao and M. K. Wu, Structural, optical and magnetic characterization of Ru doped ZnO nanorods, J. Alloys Compd., 2014, 588, 705.

    Article  CAS  Google Scholar 

  26. J. S. Malhotra, A. K. Singh, R. Khosla, S. K. Sharma, G. Sharma and S. Kumar, Investigations on structural, optical and magnetic properties of Fe and Dy co-doped ZnO nanoparticles, J. Mater. Sci.: Mater. Electron., 2018, 29, 3850.

    CAS  Google Scholar 

  27. P. Kaur, S. Kumar, C. L. Chen, Y. Y. Hsu, T. S. Chan, C. L. Dong, C. Srivastava, A. Singh and S. M. Rao, Investigations on structural, magnetic and electronic structure of Gd-doped ZnO nanostructures synthesized using sol-gel technique, Appl. Phys. A, 2016, 122, 1.

    Google Scholar 

  28. S. S. Arbuj, U. P. Mulik and D. P. Amalnerkar, Synthesis of Ta2O5/TiO2 coupled semiconductor oxide nanocomposites with high photocatalytic activity, Nanosci. Nanotechnol. Lett., 2013, 5, 968.

    Article  CAS  Google Scholar 

  29. S. S. Arbuj, R. R. Hawaldar, U. P. Mulik and D. P. Amalnerkar, Preparation, characterisation and photo-catalytic activity of Nb2O5/TiO2 coupled semiconductor oxides, J. Nanoeng. Nanomanuf., 2013, 3, 79.

    Article  CAS  Google Scholar 

  30. W. Ho, J. C. Yu, J. Lin, J. Yu and P. Li, Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2, Langmuir, 2004, 20, 5865.

    Article  CAS  PubMed  Google Scholar 

  31. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun and Y. Zhu, Performance enhancement of ZnO photocatalyst, comparative photocatalytic ability of nanocrystal-carbon nanotube and TiO2 nanocrystal hybrid nanostructures, Langmuir, 2013, 29, 3097.

    Article  CAS  PubMed  Google Scholar 

  32. K. H. Ji, D. M. Jang, Y. J. Cho, Y. Myung, H. S. Kim, Y. Kim and J. Park, Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures, J. Phys. Chem. C, 2009, 113, 19966.

    Article  CAS  Google Scholar 

  33. Y. Duan, Q. Luo, D. Wang, X. Li, J. An and Q. Liu, An efficient visible light photocatalyst poly(3-hexylthiophene)/ CdS nanocomposite with enhanced antiphotocorrosion property, Superlattices Microstruct., 2014, 67, 61.

    Article  CAS  Google Scholar 

  34. N. M. Dimitrijevic, S. Tepavcevic, Y. Liu, T. Rajh, S. C. Silver and D. M. Tiede, Nanostructured TiO2/polypyrrole for visible light photocatalysis, J. Phys. Chem. C, 2013, 117, 15540.

    Article  CAS  Google Scholar 

  35. K. Nakata and A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 2012, 13, 169.

    Article  CAS  Google Scholar 

  36. H. Qin, W. Li, Y. Xia and T. He, Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO, ACS Appl. Mater. Interfaces, 2011, 3, 3152.

    Article  CAS  PubMed  Google Scholar 

  37. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater., 2002, 12, 323.

    Article  CAS  Google Scholar 

  38. Z. W. Pan, Z. R. Dai and Z. L. Wang, Nanobelts of semiconducting oxides, Science, 2001, 291, 1947.

    Article  CAS  PubMed  Google Scholar 

  39. J. Y. Lao, J. G. Wen and Z. F. Ren, Hierarchical ZnO nanostructures, Nano Lett., 2002, 2, 1287.

    Article  CAS  Google Scholar 

  40. F. Su, J. Lu, Y. Tian, X. Ma and J. Gong, Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting, Phys. Chem. Chem. Phys., 2013, 15, 12026.

    Article  CAS  PubMed  Google Scholar 

  41. L. T. Chen, U. H. Liao, J. W. Chang, S. Y. Lu and D. H. Tsai, Aerosol-Based Self-Assembly of a Ag-ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis, Langmuir, 2018, 34(17), 5030–5039.

    Article  CAS  PubMed  Google Scholar 

  42. H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li and Y. Lu, Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity, J. Am. Chem. Soc., 2007, 129, 4538.

    Article  CAS  PubMed  Google Scholar 

  43. D. Lin, H. Wu, R. Zhang and W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater., 2009, 21, 3479.

    Article  CAS  Google Scholar 

  44. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, Ag/ZnO Heterostructure nanocrystals: synthesis, characterization and photocatalysis, Inorg. Chem., 2007, 46, 6980.

    Article  CAS  PubMed  Google Scholar 

  45. V. G. Pol, J. M. Calderon-Moreno and P. Thiyagarajan, Facile synthesis of novel photoluminescent ZnO micro- and nanopencils, Langmuir, 2008, 24, 13640.

    Article  CAS  PubMed  Google Scholar 

  46. Q. Zhang, J. Xie, J. Yang and J. Y. Lee, Monodisperse icosa-hedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation, ACS Nano, 2009, 3, 139.

    Article  CAS  PubMed  Google Scholar 

  47. Y. Yang, H. Yan, Z. Fu, B. Yang, L. Xia, Y. Xu, J. Zuo and F. Li, Photoluminescence and Raman studies of electrochemically as-grown and annealed ZnO films, Solid State Commun., 2006, 138, 521.

    Article  CAS  Google Scholar 

  48. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 1996, 79, 7983.

    Article  CAS  Google Scholar 

  49. M. Trejo, P. Santiago, H. Sobral, L. Rendon and U. Pal, Synthesis and growth mechanism of one-dimensional Zn/ ZnO core-shell nanostructures in low-temperature hydrothermal process, Cryst. Growth Des., 2009, 9, 3024.

    Article  CAS  Google Scholar 

  50. N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li and D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2: from theory to experiment, ACS Nano, 2013, 7, 1504.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr B. B. Kale, Director, and Dr S. B. Rane, Scientist, C-MET Pune, for providing the spectroscopic characterisation facilities. GGU and WL sincerely thank the Global Frontier R&D Program at the Center for Multiscale Energy System (Grant No. NRF-2014M3A6A7074784) and the Basic Science Research Program through the National Research Foundation of Korea (NRF), MOS, ICT & Future Planning (Grant No. NRF-2016R1C1B2011289) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir S. Arbuj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimpliskar, P.V., Motekar, S.C., Umarji, G.G. et al. Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study. Photochem Photobiol Sci 18, 1503–1511 (2019). https://doi.org/10.1039/c9pp00099b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00099b

Navigation