Skip to main content
Log in

Photoelectrocatalytic degradation of emerging contaminants at WO3/BiVO4 photoanodes in aqueous solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

WO3/BiVO4 films obtained by electrochemical deposition of BiVO4 over mesoporous WO3 were applied to the photoelectrochemical degradation of selected emerging contaminants (ketoprofen and levofloxacine) in aqueous solutions. The WO3/BiVO4 films in this work are characterized by a mesoporous morphology with a maximum photoconversion efficiency >40% extending beyond 500 nm in Na2SO4 electrolytes. Oxygen was found to be the dominant water oxidation product (ca. 90% faradaic yield) and no evidence for the photogeneration of OH radicals was obtained. Nevertheless, both 10 ppm levofloxacine and ketoprofen could be degraded at WO3/BiVO4 junctions upon a few hours of illumination under visible light. However, while levofloxacine degradation intermediates were progressively consumed by further oxidation at the WO3/BiVO4 interface, ketoprofen oxidation byproducts, being stable aromatic species, were found to be persistent in aqueous solution even after 15 hours of solar simulated illumination. This indicates that, due to the lower oxidizing power of photogenerated holes in BiVO4 and a different water oxidation mechanism, the employment of WO3/BiVO4 in photoelectrochemical environmental remediation processes is much less universal than that possible with wider band gap semiconductors such as TiO2 and WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Saison, N. Chemin, C. Chaneac, O. Durupthy, L. Mariey, F. Maugé, V. Brezovà and J.-P. Jolivet, J. Phys. Chem. C, 2015, 119, 12967–12977.

    Article  CAS  Google Scholar 

  2. F. F. Abdi and R. Van de Krol, J. Phys. Chem. C, 2012, 116 ,9398–9404.

    Article  CAS  Google Scholar 

  3. J. Su, L. Guo, S. Yoriya and C. A. Grimes, Cryst. Growth Des., 2009, 10, 856–861.

    Article  CAS  Google Scholar 

  4. Q. Jia, K. Iwashina and A. Kudo, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 11564–11569.

    Article  CAS  Google Scholar 

  5. M. Oshikiri, M. Boero, J. Ye, Z. Zou and G. Kido, J. Chem. Phys., 2002, 117 ,7313–7318.

    Article  CAS  Google Scholar 

  6. B. Zhou, X. Zhao, H. Liiu, J. Qu and C. P. Huang, Sep. Purif. Technol., 2011, 77, 275–282.

    Article  CAS  Google Scholar 

  7. N. C. Castillo, L. Ding, A. Heel, T. Graule and C. Pulgarin, J. Photochem. Photobiol., A, 2010, 216, 221–227.

  8. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai and Y. Wu, J. Phys. Chem. B, 2006, 110, 20211–20216.

    Article  CAS  PubMed  Google Scholar 

  9. M. Shang, W. Wang, S. Sun, J. Ren, L. Zhou and L. Zhang, J. Phys. Chem. C, 2009, 113, 20228–20233.

    Article  CAS  Google Scholar 

  10. H. Li, H. Yu, X. Quan and H. Zhao, Adv. Funct. Mater., 2015, 25, 3074–3080.

    Article  CAS  Google Scholar 

  11. R. Li, H. Han, F. Zhang, D. Wang and C. Li, Energy Environ. Sci., 2014, 7, 1369–1376.

    Article  CAS  Google Scholar 

  12. H. Li, Y. Sun, B. Cai, S. Gan, D. Han and L. Niu, Appl. Catal., B, 2015, 170–171, 206–214.

    Article  CAS  Google Scholar 

  13. F. Chen, Q. Yang, J. Sun, F. Yao, Y. Wang, X. Wang, X. Li, C. Niu, D. Wang and G. Zeng, ACS Appl. Mater. Interfaces, 2016, 8, 328877–332900.

    Google Scholar 

  14. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe and H. Sugihara, J. Phys. Chem. B, 2006, 110, 11352–11360.

    Article  CAS  PubMed  Google Scholar 

  15. I. Tantis, L. Bousiakou, Z. Frontistis, D. Mantzavinos, I. Konstantinou, M. Antonopoulou, G.-A. Karikas and P. Lianos, J. Hazard. Mater., 2015, 294, 57–63.

    Article  CAS  PubMed  Google Scholar 

  16. I. Tantis, E. Stathatos, D. Mantzavinos and P. Lianos, J. Chem. Technol. Biotechnol., 2015, 90, 1338–1344.

    Article  CAS  Google Scholar 

  17. G. Longobucco, L. Pasti, A. Molinari, N. Marchetti, S. Caramori, V. Cristino, R. Boaretto and C. A. Bignozzi, Appl. Catal., B, 2017, 204, 273–228, 272.

  18. S. Caramori, F. Ronconi, R. Argazzi, S. Carli, R. Boaretto, E. Busatto and C. A. Bignozzi, in Applied Photochemistry: When Light Meets Molecules, ed. S. Silvi and G. Bergamini, Springer, 2016, vol. 92, pp. 67–143.

    CAS  Google Scholar 

  19. V. Cristino, G. Longobucco, N. Marchetti, S. Caramori, C. A. Bignozzi, A. Martucci, A. Molinari, R. Boaretto, C. Stevanin, R. Argazzi, M. Dal Colle, R. Bertoncello and L. Pasti, Catal. Today, 2018, DOI: 10.1016/j.cattod.2018.1009.1020.

  20. B. Zhou, J. Qu, X. Zhao and H. Liu, J. Environ. Sci., 2011, 23 ,151–159.

    Article  CAS  Google Scholar 

  21. P. Chatchai, Y. Murakami, S. Kishioka, A. Y. Nosaka and Y. Nosaka, Electrochim. Acta, 2009, 54, 1147–1152.

    Article  CAS  Google Scholar 

  22. P. Chatchai, S. Kishioka, Y. Murakami, A. Y. Nosaka and Y. Nosaka, Electrochim. Acta, 2010, 55, 1147–1152.

    Article  CAS  Google Scholar 

  23. J. Su, L. Guo, N. Bao and C. A. Grimes, Nano Lett., 2011, 11, 1928–1933.

    Article  CAS  PubMed  Google Scholar 

  24. P. Chatchai, A. Y. Nosaka and Y. Nosaka, Electrochim. Acta, 2013, 94, 314–319.

    Article  CAS  Google Scholar 

  25. I. Grigioni, M. Abdellah, A. Corti, M. V. Dozzi, L. Hammarstrom and E. Selli, J. Am. Chem. Soc., 2018, 140, 14042–14045.

    Article  CAS  PubMed  Google Scholar 

  26. K. H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang and W. Mai, Nano Energy, 2015, 18, 222–231.

    Article  CAS  Google Scholar 

  27. L. Pasti, E. Sarti, A. Cavazzini, N. Marchetti, F. Dondi and A. Martucci, J. Sep. Sci., 2013, 36, 1604–1611.

    Article  CAS  PubMed  Google Scholar 

  28. M. González-Pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganés, R. Rosal, K. Boltes and F. Fernández-Piñas, Water Res., 2013, 47, 2050–2064.

    Article  PubMed  CAS  Google Scholar 

  29. https://www3.epa.gov/caddis/ssr_ion_int.html.

  30. V. Cristino, M. Sabrina, A. Molinari, S. Caramori, S. Carli, R. Boaretto, R. Argazzi, L. Meda and C. A. Bignozzi, J. Mater. Chem. A, 2016, 4, 2995–3006.

    Article  CAS  Google Scholar 

  31. J. A. Seabold and K.-S. Choi, J. Am. Chem. Soc., 2012, 134, 2186–2192.

    Article  CAS  PubMed  Google Scholar 

  32. http://rruff.geo.arizona.edu/AMS/amcsd.php, American Mineralogist Crystal Structure Database.

  33. Y. Joly, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 63, 125120.

    Article  CAS  Google Scholar 

  34. B. D. Sherman, M. V. Sheridan, C. J. Dares and T. J. Meyer, Anal. Chem., 2016, 88, 7076–7082.

    Article  CAS  PubMed  Google Scholar 

  35. M. Bonchio, Z. Syrgiannis, M. Burian, N. Marino, E. Pizzolato, K. Dirian, F. Rigodanza, G. C. Volpato, G. La Ganga, N. Demitri, S. Berardi, H. Amenitsch, D. M. Guldi, S. Caramori, C. A. Bignozzi, A. Sartorel and M. Prato, Nat. Chem., 2019, 11, 146–153.

    Article  CAS  PubMed  Google Scholar 

  36. V. Cristino, S. Caramori, R. Argazzi, L. Meda, G. L. Marra and C. A. Bignozzi, Langmuir, 2011, 27, 7276–7284.

    Article  CAS  PubMed  Google Scholar 

  37. A. Kudo, K. Omori and H. Kato, J. Am. Chem. Soc., 1999, 121, 11459–11467.

    Article  CAS  Google Scholar 

  38. S. Tokunaga, H. Kato and A. Kudo, Chem. Mater., 2001, 13, 4624–4628.

    Article  CAS  Google Scholar 

  39. Z. Zai, A. Getsoian and A. T. Bell, J. Catal., 2013, 308, 25–36.

    Article  CAS  Google Scholar 

  40. B. J. Trzesniewski, I. A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Carradona, D. A. Vermaas, A. Longo and S. Gimenez, Energy Environ. Sci., 2017, 10, 1517–1529.

    Article  CAS  Google Scholar 

  41. S. Yamazoe, Y. Hitomi, T. Shishido and T. Tanaka, J. Phys. Chem. C, 2008, 112, 6869–6879.

    Article  CAS  Google Scholar 

  42. I. Grigioni, K. G. Stamplecoskie, E. Selli and P. V. Kamat, J. Phys. Chem. C, 2015, 119, 20792–20800.

    Article  CAS  Google Scholar 

  43. Y. Ma, R. Pendlebury, A. Reynal, F. Le Formal and J. R. Durrant, Chem. Sci., 2014, 5, 2964–2973.

    Article  CAS  Google Scholar 

  44. Q. Zeng, J. Li, L. Li, J. Bai, L. Xia and B. Zhou, Appl. Catal., B, 2017, 217, 21–29.

    Article  CAS  Google Scholar 

  45. C. Liu, Y. Yang, J. Li, S. Chen, W. Li and X. Tang, Chem. Eng. J., 2017, 326, 603–611.

    Article  CAS  Google Scholar 

  46. Q. Mi, A. Zhanaidrova, B. Brunschwig, H. B. Gray and N. S. Lewis, Energy Environ. Sci., 2012, 5, 5694–5700.

    Article  CAS  Google Scholar 

  47. I. Grigioni, A. Corti, M. V. Dozzi and E. Selli, J. Phys. Chem. C, 2018, 122, 13969–13978.

    Article  CAS  Google Scholar 

  48. R. S. Khnayzer, M. W. Mara, J. Huang, M. L. Shelby, L. X. Chen and F. N. Castellano, ACS Catal., 2012, 2, 2150–2016.

    Article  CAS  Google Scholar 

  49. A. Molinari, E. Sarti, N. Marchetti and L. Pasti, Appl. Catal., B, 2017, 203, 9–17.

    Article  CAS  Google Scholar 

  50. L. Pasti, E. Sarti, A. Martucci, N. Marchetti, C. Stevanin and A. Molinari, Appl. Catal., B, 2018, 239, 345–351.

    Article  CAS  Google Scholar 

  51. Y. Gong, J. Li, Y. Zahng, M. Zhang, X. Tian and A. Wang, J. Hazard. Mater., 2016, 304, 320–328.

    Article  CAS  PubMed  Google Scholar 

  52. T. Kosjek, S. Perko, E. Heath, B. Kralj and D. Zigon, J. Mass Spectrom., 2011, 46, 391–401.

    Article  CAS  PubMed  Google Scholar 

  53. A. S. Maia, A. R. Ribeiro, C. L. Amorim, J. C. Barreiro, Q. B. Cass, P. M. Castro and M. E. Tiritan, J. Chromatogr., A, 2014, 1333, 87–98.

    Article  CAS  Google Scholar 

  54. I. Michael, E. Hapeshi, J. Acena, S. Perez, M. Petrovic, A. Zapata and D. Fatta-Kassinos, Sci. Total Environ., 2013, 461, 39–48.

    Article  PubMed  CAS  Google Scholar 

  55. R. K. Szabo, C. Megyeri, E. Illes, K. Gajda-Schrantz, P. Mazellier and A. Dombi, Chemosphere, 2011, 84, 1658–1663.

    Article  CAS  PubMed  Google Scholar 

  56. R. K. Szabo, C. Megyeri, E. Illes, K. Gajda-Schrantz, P. Mazellier and A. Dombi, Chemosphere, 2011, 84, 1658–1663.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Pasti.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00043g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristino, V., Pasti, L., Marchetti, N. et al. Photoelectrocatalytic degradation of emerging contaminants at WO3/BiVO4 photoanodes in aqueous solution. Photochem Photobiol Sci 18, 2150–2163 (2019). https://doi.org/10.1039/c9pp00043g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00043g

Navigation