Skip to main content
Log in

Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730–840 nm spectral region

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The use of superparamagnetic iron oxide nanoparticles (SPIONs) as a sensitizer in photothermal therapy (PTT) is relatively new and the origin of such a phenomenon is not known. Usually, large crystals and aggregated particles are preferred in the literature, suggesting that these increase the absorbance of particles at the irradiation wavelength, and hence, provide a larger temperature increase. This study has two major goals: identification of the key factors that affect the photo-induced temperature increase in well-controlled experiments and the influence of laser irradiation on nanoparticle properties. Small, biocompatible poly(acrylic acid) coated SPIONs (PAA/SPIONs) were used since they are more practical for future medical use than large aggregates. We studied the impact of three major laser-dependent variables, namely the wavelength (between 728 and 838 nm), intensity (1.85–9.76 W cm−2) and power (105–800 mW) as well as attenuation at the irradiation wavelength, on photothermal heating achieved with PAA/SPIONs. Within the studied range of these variables, only the laser power plays a critical role on the magnitude of photothermal heating in solutions. There is no strong correlation between the attenuation at the excitation wavelength and the temperature increase. In addition, extensive characterization of SPIONs before and after irradiation revealed no significant difference, which supports the re-usability of SPIONs. Lastly, the PTT potential of these small PAA/SPIONs was demonstrated in vitro on HeLa cells. At these low laser powers no temperature increase in SPION-free water or cell death in SPION-free cells was detected. Hence, this study provides a new insight into the photothermal effect of SPIONs, provides a clear and repeatable experimental procedure and demonstrates great potential for small SPIONs to be exploited in PTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chertok, A. E. David and V. C. Yang, Biomaterials, 2010, 31, 6317–6324.

    Article  CAS  Google Scholar 

  2. B. Chertok, B. A. Moffat, A. E. David, F. Yu, C. Bergemann, B. D. Ross and V. C. Yang, Biomaterials, 2008, 29, 487–496.

    Article  CAS  Google Scholar 

  3. C. Hopper, Lancet Oncol., 2000, 1, 212–219.

    Article  CAS  Google Scholar 

  4. D. Bechet, P. Couleaud, C. Frochot, M.-L. Viriot, F. Guillemin and M. Barberi-Heyob, Trends Biotechnol., 2008, 26, 612–621.

    Article  CAS  Google Scholar 

  5. X. Wang, K. Liu, G. Yang, L. Cheng, L. He, Y. Liu, Y. Li, L. Guo and Z. Liu, Nanoscale, 2014, 6, 9198–9205.

    Article  Google Scholar 

  6. D. Jaque, L. M. Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. Plaza, E. M. Rodriguez and J. G. Sole, Nanoscale, 2014, 6, 9494–9530.

    Article  CAS  Google Scholar 

  7. X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, J. Am. Chem. Soc., 2006, 128, 2115–2120.

    Article  CAS  Google Scholar 

  8. H. K. Moon, S. H. Lee and H. C. Choi, ACS Nano, 2009, 3, 3707–3713.

    Article  CAS  Google Scholar 

  9. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald and M. A. El-Sayed, Cancer Lett., 2008, 269, 57–66.

    Article  CAS  Google Scholar 

  10. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee and Z. Liu, Nano Lett., 2010, 10, 3318–3323.

    Article  CAS  Google Scholar 

  11. X. Liu, H. Tao, K. Yang, S. Zhang, S.-T. Lee and Z. Liu, Biomaterials, 2011, 32, 144–151.

    Article  Google Scholar 

  12. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song and A. G. Schwartz, Nat. Mater., 2009, 8, 935.

    Article  CAS  Google Scholar 

  13. H. Ke, J. Wang, Z. Dai, Y. Jin, E. Qu, Z. Xing, C. Guo, X. Yue and J. Liu, Angew. Chem., 2011, 123, 3073–3077.

    Article  Google Scholar 

  14. M.-F. Tsai, S.-H. G. Chang, F.-Y. Cheng, V. Shanmugam, Y.-S. Cheng, C.-H. Su and C.-S. Yeh, ACS Nano, 2013, 7, 5330–5342.

    Article  CAS  Google Scholar 

  15. M. Potara, S. Boca, E. Licarete, A. Damert, M.-C. Alupei, M. T. Chiriac, O. Popescu, U. Schmidt and S. Astilean, Nanoscale, 2013, 5, 6013–6022.

    Article  CAS  Google Scholar 

  16. R. He, Y.-C. Wang, X. Wang, Z. Wang, G. Liu, W. Zhou, L. Wen, Q. Li, X. Wang and X. Chen, Nat. Commun., 2014, 5, 4327.

    Article  CAS  Google Scholar 

  17. M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M. P. Melancon, M. Tian, D. Liang and C. Li, J. Am. Chem. Soc., 2010, 132, 15351–15358.

    Article  CAS  Google Scholar 

  18. N. Lee and T. Hyeon, Chem. Soc. Rev., 2012, 41, 2575–2589.

    Article  CAS  Google Scholar 

  19. U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel and H. Weller, Nano Lett., 2009, 9, 4434–4440.

    Article  CAS  Google Scholar 

  20. H. B. Na, I. C. Song and T. Hyeon, Adv. Mater., 2009, 21, 2133–2148.

    Article  CAS  Google Scholar 

  21. M. Johannsen, B. Thiesen, P. Wust and A. Jordan, Int. J. Hyperthermia, 2010, 26, 790–795.

    Article  Google Scholar 

  22. J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri and F. Gazeau, J. Am. Chem. Soc., 2007, 129, 2628–2635.

    Article  CAS  Google Scholar 

  23. Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang and W. Wang, Biomaterials, 2014, 35, 7470–7478.

    Article  CAS  Google Scholar 

  24. M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu and D. Shi, Biomaterials, 2013, 34, 4078–4088.

    Article  CAS  Google Scholar 

  25. S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu and W. Yang, Biomaterials, 2015, 39, 67–74.

    Article  CAS  Google Scholar 

  26. A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino and C. Wilhelm, ACS Nano, 2016, 10, 2436–2446.

    Article  CAS  Google Scholar 

  27. A. K. Gupta and M. Gupta, Biomaterials, 2005, 26, 3995–4021.

    Article  CAS  Google Scholar 

  28. A. W. Dunn, S. M. Ehsan, D. Mast, G. M. Pauletti, H. Xu, J. Zhang, R. C. Ewing and D. Shi, Mater. Sci. Eng., C, 2015, 46, 97–102.

    Article  CAS  Google Scholar 

  29. H. Chen, J. Burnett, F. Zhang, J. Zhang, H. Paholak and D. Sun, J. Mater. Chem. B, 2014, 2, 757–765.

    Article  CAS  Google Scholar 

  30. A. Sennaroglu, U. Demirbas, S. Ozharar and F. Yaman, J. Opt. Soc. Am. B, 2006, 23, 241–249.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pelin Tozman for VSM measurements and Dr Baris Yagci (KUYTAM, Koc University) for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yağcı Acar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilici, K., Muti, A., Demir Duman, F. et al. Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730–840 nm spectral region. Photochem Photobiol Sci 17, 1787–1793 (2018). https://doi.org/10.1039/c8pp00203g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00203g

Navigation