Skip to main content

Advertisement

Log in

Chromo-luminescent selective detection of fluoride ions by a copper(II) bis(terpyridine) complex solution via a displacement approach

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Herein, for the first time, we have reported a copper(II) bis(terpyridine) complex solution for instant ‘naked eye’ chromo-luminescent selective detection of fluoride ions in an acetonitrile medium at micromolar concentration. The copper complex [Cu(II) (L)2] (NO3)2 [where L = 4’-(4-N,N’-dimethylaminophenyl)-2,2’:6’,2”-terpyridine] was characterized by mass spectroscopy and the terpyridine ligand by 1H NMR spectroscopy. The complex solution selectively discriminates F ions from other anions such as AcO, Br,Cl,CN,H2PO4, HSO4, and I in acetonitrile media via exceptional optical changes. The optical changes were evaluated by UV-visible and fluorescence techniques. Studies on the binding characteristics of the copper complex solution with fluoride ions revealed a displacement of copper ions from the complex solution as CuF2 resulting in the significant optical changes. Furthermore, displacement of Cu(II) from the complex was established by means of mass spectroscopy in the presence of 20 equivalents of fluoride ions. The limit of detection (LOD) was found to be 5.07 µM which is within the permissible range of fluoride ions in drinking water set by the World Health Organization (WHO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, J. F. Zhang and J. Yoon, Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection, Chem. Rev., 2014, 114, 5511–5571.

    Article  CAS  PubMed  Google Scholar 

  2. M. Kleerekoper, The role of fluoride in the prevention of osteoporosis, Endocrinol. Metab. Clin. North Am., 1998, 27, 441.

    Article  CAS  PubMed  Google Scholar 

  3. D. Briancon, Fluoride and osteoporosis: an overview, Rev. Rhum., 1997, 64,78–81.

    CAS  Google Scholar 

  4. L. K. Kirk, Biochemistry of the Halogens and Inorganic Halides, Plenum Press, New York, 1991.

    Book  Google Scholar 

  5. Y. Michigami, Y. Kuroda, K. Ueda and Y. Yamamoto, Determination of urinary fluoride by ion chromatography, Anal. Chim. Acta, 1993, 274, 299–302.

    Article  CAS  Google Scholar 

  6. S. Xu, K. Chen and H. Tian, A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine, J. Mater. Chem., 2005, 15, 2676–2680.

    Article  CAS  Google Scholar 

  7. J. H. Clark, Fluoride Ion as a Base in Organic Synthesis, Chem. Rev., 1980, 80, 429–452.

    Article  CAS  Google Scholar 

  8. M. Cametti and K. Rissanen, Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state, Chem. Soc. Rev., 2013, 42, 2016–2038.

    Article  CAS  PubMed  Google Scholar 

  9. H. Khanmohammadi and K. Rezaeian, Naked-eye detection of inorganic fluoride in aqueous media using a new azoazomethine colorimetric receptor enhanced by electron withdrawing groups, RSC Adv., 2014, 4, 1032–1038.

    Article  CAS  Google Scholar 

  10. P. Cosentino, B. Grossman, C. Shieh, S. Doi, H. Xi and P. Erbland, Fiber-optic chloride sensor development, J. Geotech. Eng., 1995, 121, 610.

    Article  Google Scholar 

  11. H. Miyaji, W. Sato and J. L. Sessler, Naked-Eye Detection of Anions in Dichloromethane: Colorimetric Anion Sensors Based on Calix, Angew. Chem., Int. Ed., 2000, 39, 1777.

    Article  CAS  Google Scholar 

  12. P. Konieczka, B. Zygmunt and J. Namiesnik, Comparison of Fluoride Ion-Selective Electrode Based Potentiometric Methods of Fluoride Determination in Human Urine, J. Bull. Environ. Contam. Toxicol., 2000, 64, 794–803.

    Article  CAS  Google Scholar 

  13. K. Itai and H. Tsunoda, Highly sensitive and rapid method for determination of fluoride ion concentrations in serum and urine using flow injection analysis with a fluoride ion-selective electrode, Clin. Chim. Acta, 2001, 308, 163–171.

    Article  CAS  PubMed  Google Scholar 

  14. B. Ke, W. Wu, L. Wei, F. Wu, G. Chen, G. He and M. Li, Cell and in Vivo Imaging of Fluoride Ion with Highly Selective Bioluminescent Probes, Anal. Chem., 2015, 87, 9110–9113.

    Article  CAS  PubMed  Google Scholar 

  15. B. Zhu, F. Yuan, R. Li, Y. Li, Q. Wei, Z. Ma, B. Du and X. Zhang, A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells, Chem. Commun., 2011, 47, 7098–7100.

    Article  CAS  Google Scholar 

  16. X. Zheng, W. Zhu, D. Liu, H. Ai, Y. Huang and Z. Lu, Highly Selective Colorimetric/Fluorometric Dual-Channel Fluoride Ion Probe, and Its Capability of Differentiating Cancer Cells, Appl. Mater. Interfaces, 2014, 6, 7996–8000.

    Article  CAS  Google Scholar 

  17. K. Ponnuvel and V. Padmini, Turn-on fluorescence chemosensor for fluoride ions and its applicability in Imaging of Living Cells, J. Lumin., 2016, 169, 289–294.

    Article  CAS  Google Scholar 

  18. J. Singh, M. Yadav, A. Singha and N. Singh, Zinc metal complex as sensor for simultaneous detection of fluoride and HSO4- ions, Dalton Trans., 2015, 44, 12589–12597.

    Article  CAS  PubMed  Google Scholar 

  19. J. Wang, H.-B. Liu, W. Wang, Il Kim and C.-S. Ha, A thiazoline-containing cobalt(II) complex based colorimetric fluorescent probe: “turn-on” detection of fluoride, Dalton Trans., 2009, 10422–10425.

    Google Scholar 

  20. C. Parthiban, S. Ciattini, L. Chelazzi and K. P. Elango, Selective colorimetric sensing of fluoride in an aqueous solution by amino-naphthoquinone and its Co(II), Ni(II), Cu(II) and Zn(II) complexes - effect of complex formation on sensing behaviour, RSC Adv., 2016, 6, 91265–91274.

    Article  CAS  Google Scholar 

  21. T. Kundu, A. D. Chowdhury, D. De, S. M. Mobin, V. G. Puranik, A. Datta and G. K. Lahiri, Selective recognition of fluoride and acetate by a newly designed ruthenium framework: experimental and theoretical investigations, Dalton Trans., 2012, 41, 4484–4496.

    Article  CAS  PubMed  Google Scholar 

  22. W. Lu, H. Jiang, F. Hu, L. Jiang and Z. Shen, A novel chemosensor based on Fe(III)-complexation for selective recognition and rapid detection of fluoride anions in aqueous media, Tetrahedron, 2011, 67, 7909–7912.

    Article  CAS  Google Scholar 

  23. Y. Takahashi, D. A. P. Tanaka, H. Matsunaga and T. M. Suzuki, Fluorometric detection of fluoride ion by ligand exchange reaction with 3-hydroxyflavone coordinated to a zirconium(IV)-EDTA complex, J. Chem. Soc., Perkin Trans. 2, 2002, 759–762.

    Google Scholar 

  24. Y. Zheng, C. Tan, G. P. C. Drummen and Q. Wang, A luminescent lanthanide complex-based anion sensor with electron-donating methoxy groups for monitoring multiple anions in environmental and biological processes, Spectrochim. Acta, Part A, 2012, 96, 387–394.

    Article  CAS  Google Scholar 

  25. A. K. Purohit, B. N. Ghosh and P. K. Kar, Selective detection of Pyrophosphate anion by a simple Cd(II)based terpyridine complex, Spectrochim. Acta, Part A, 2018, 188, 547–550.

    Article  CAS  Google Scholar 

  26. A. Wild, A. Winter, M. D. Hager and U. S. Schubert, Fluorometric sensor based on bisterpyridine metallopolymer: detection of cyanide and phosphates in water, Analyst, 2012, 137, 2333–2337.

    Article  CAS  PubMed  Google Scholar 

  27. I. Bhowmick, D. J. Boston, R. F. Higgins, C. M. Klug, M. P. Shores and T. Gupta, Naked eye detection of cyanide in water with Co(II) bis(terpyridine) complexes, Sens. Actuators, B, 2016, 235, 325–329.

    Article  CAS  Google Scholar 

  28. X. Peng, Y. Xu, S. Sun, Y. Wu and J. Fan, A ratiometric fluorescent sensor for phosphates: Zn2+-enhanced ICT and ligand competition, Org. Biomol. Chem., 2007, 5, 226–228.

    Article  CAS  PubMed  Google Scholar 

  29. Y. H. Lee, N. V. Nghia, M. J. Go, J. Lee, S. U. Lee and M. H. Lee, Terpyridine-Triarylborane Conjugates for the Dual Complexation of Zinc(II) Cation and Fluoride Anion, Organometallics, 2014, 33, 753–762.

    Article  CAS  Google Scholar 

  30. E. C. Constable, Modern terpyridine Chemistry, Adv. Inorg. Chem., 1986, 30, 69–121.

    Article  CAS  Google Scholar 

  31. G. Zhang, E. Liu, C. Yang, L. Li, J. A. Golen and A. L. Rheingold, Copper(II) Complexes of 2,2′:6′,2″-Terpyridine Derivatives for Catalytic Aerobic Alcohol Oxidations - Observation of Mixed-Valence Cu(I)-Cu(II) Assembles, Eur., J. Inorg. Chem., 2015, 939–947.

    Google Scholar 

  32. M. Walesa-Chorab, A. R. Stefankiewicz, A. Gorczyñski, M. Kubicki, J. Klak, M. J. Korabik and V. Patroniak, Structural, spectroscopic and magnetic properties of new copper(II) complexes with a terpyridine ligand, Polyhedron, 2011, 30, 233–240.

    Article  CAS  Google Scholar 

  33. K. Abdi, H. Hadadzadeh, M. Weil and M. Salimi, Mononuclear copper(II) complex with terpyridine and an extended phenanthroline base, [Cu(tpy)(dppz)]2+: Synthesis, crystal structure, DNA binding and cytotoxicity activity, Polyhedron, 2012, 31 (1), 638–648.

    Article  CAS  Google Scholar 

  34. S. Rajalakshmi, T. Weyhermüller, M. Dinesh and B. U. Nair, Copper(II) complexes of terpyridine derivatives: A footstep towards development of antiproliferative agent for breast cancer, J. Inorg. Biochem., 2012,117,48–59.

    Article  CAS  PubMed  Google Scholar 

  35. A. Wild, A. Winter, F. Schlütter and U. S. Schubert, Advances in the field of p-conjugated terpyridines, Chem. Soc. Rev., 2011, 40, 1459–1511.

    Article  CAS  PubMed  Google Scholar 

  36. I. Eryazici, C. N. Moorefield and G. R. Newkome, Square-Planar Pd(II), Pt(II), and Au(III) Terpyridine Complexes: Their Syntheses, Physical Properties, Supramolecular Constructs, and Biomedical Activities, Chem. Rev., 2008, 108, 1834–1895.

    Article  CAS  PubMed  Google Scholar 

  37. Z.-Q. Liang, C.-X. Wang, J.-X. Yang, H.-W. Gao, Y.-P. Tian, X.-T. Tao and M.-H. Jiang, A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water, New J. Chem., 2007, 31, 906–910.

    Article  CAS  Google Scholar 

  38. M. E. Padilla-Tosta, J. M. Lloris, R. Martínez-Máñez, M. D. Marcos, M. A. Miranda, T. Pardo, F. Sancenón and J. Soto, Fluorescent chemosensors for heavy metal ions based on bis(terpyridyl) ruthenium(II) complexes containing aza-oxa and polyaza macrocycles, Eur, J. Inorg. Chem., 2001, 1475–1482.

    Google Scholar 

  39. P. Das, A. Ghosh, M. K. Kesharwani, V. Ramu, B. Ganguly and A. Das, Zn(II)-2,2:6,2-Terpyridine-Based Complex as Fluorescent Chemosensor for PPi, AMP and ADP, Eur, J. Inorg. Chem., 2011, 3050–3058.

    Google Scholar 

  40. P. Gutlich and H. A. Goodwin, Spin Crossover in Transition Metal Compounds, Top. Curr. Chem., ed., 2004, 233–235.

    Google Scholar 

  41. S. Hayami, Y. Komatsu, T. Shimizu, H. Kamihata and Y. H. Lee, Spin-crossover in cobalt(II) compounds containing terpyridine and its derivatives, Coord. Chem. Rev., 2011, 255, 1981–1990.

    Article  CAS  Google Scholar 

  42. A. Winter, G. R. Newkome and U. S. Schubert, Catalytic Applications of Terpyridines and their Transition Metal Complexes, ChemCatChem, 2011, 3, 1384–1406.

    Article  CAS  Google Scholar 

  43. A. J. Esswein and D. G. Nocera, Hydrogen Production by Molecular Photocatalysis, Chem. Rev., 2007, 107, 4022–4047.

    Article  CAS  PubMed  Google Scholar 

  44. R. R. Fernandes, A. M. Kirillov, M. F. C. Guedes da Silva, Z. Ma, J. A. L. da Silva, J. J. R. Fraústo da Silva and A. J. L. Pombeiro, An infinite Two-Dimensional Hybrid Water-Chloride Network, Self-Assembled in a Hydrophobic Terpyridine iron(II) Matrix, Cryst. Growth Des., 2008, 8, 782–785.

    Article  CAS  Google Scholar 

  45. J. Song, B.-C. Wang, H.-M. Hu, L. Gou, Q.-R. Wu, X.-L. Yang, Y.-Q. Shangguan, F.-X. Dong and G.-L. Xue, in situ hydrothermal syntheses, crystal structures and luminescent properties of two novel zinc(II) coordination polymers based on tetrapyridyl ligand, Inorg. Chim. Acta, 2011, 366, 134–140.

    Article  CAS  Google Scholar 

  46. J. E. Beves, D. J. Bray, J. K. Clegg, E. C. Constable, C. E. Housecroft, K. A. Jolliffe, C. J. Kepert, L. F. Lindoy, M. Neuburger, D. J. Price, S. Schaffner and F. Schaper, Expanding the 4,4′-bipyridine ligand: Structural variation in {M(pytpy)2}2+ complexes (pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, M = Fe, Ni, Ru) and assembly of the hydrogen-bonded, one-dimensionaI polymer {[Ru(pytpy) (Hpytpy)]}n3n+, Inorg. Chim. Acta, 2008, 361, 2582–2590.

    Article  CAS  Google Scholar 

  47. W.-J. Shi, L. Hou, D. Li and Y.-G. Yin, Supramolecular assembly driven by hydrogen-bonding and p-p stacking interactions based on copper(II)-terpyridyl complexes, Inorg. Chim. Acta, 2007, 360, 588–598.

    Article  CAS  Google Scholar 

  48. J. P. López, W. Kraus, G. Reck, A. Thünemann and D. G. Kruth, Alternating perpendicular 1-D channels in the supramolecular structure of the copper(II) complex [Cu(pyterpy)2](PF6)2.CH3OH. 0.5 CH2Cl2 (pyterpy = 4′-(4′″-pyridyl)-2,2′:6′,2″-terpyridine), Inorg. Chem. Commun., 2005, 8, 281–284.

    Article  CAS  Google Scholar 

  49. J. E. Beves, E. C. Constable, C. E. Housecroft, C. J. Kepert, M. Neuburger, D. J. Price and S. Schaffner, The conjugate acid of bis{49-(4-pyridyl)-2,29:69,20-terpyridine}iron(II)asa self-complementary hydrogen-bonded building block, CrystEngComm, 2007, 9, 1073–1077.

    Article  CAS  Google Scholar 

  50. J. Wang and G. H. Hanan, A Facile Route to Sterically Hindered and Non-Hindered 4′-Aryl-2,2′:6′,2″-terpyridine, Synlett, 2005, 1251.

    Google Scholar 

  51. D. Toledo, G. Ahumada, C. Manzur, T. Roisnel, O. Pena, J.-R. Hamon, J.-Y. Pivan and Y. Moreno, Unusualtrinuclear complex of copper(II) containing a 4′-(3-methyl-2-thienyl)-4,2′:6′,4″-terpyridine ligand. Structural, spectroscopic, electrochemical and magnetic properties, J. Mol. Struct., 2017, 1146, 213–221.

    Article  CAS  Google Scholar 

  52. B. Z. Momeni and S. Heydari, Design of novel copper(II) and zinc(II) coordination polymers based on the 4′-functionalized terpyridines, Polyhedron, 2015, 97, 94–102.

    Article  CAS  Google Scholar 

  53. N. Alvarez, N. Veiga, S. Iglesias, M. H. Torre and G. Facchin, Synthesis, structural characterization and DNA interaction of new copper-terpyridine complexes, Polyhedron, 2014, 68, 295–302.

    Article  CAS  Google Scholar 

  54. K. Abdi, H. Hadadzadeh, M. Weil and M. Salimi, Mononuclear copper(II) complex with terpyridine and an extended phenanthroline base, [Cu(tpy)(dppz)]2+: Synthesis, crystal structure, DNA binding and cytotoxicity activity, Polyhedron, 2012, 31, 638–648.

    Article  CAS  Google Scholar 

  55. S. S. Razi, P. Srivastava, R. Ali, R. C. Gupta, S. K. Dwivedi and A. Misra, A coumarin-derived useful scaffold exhibiting Cu2+ induced fluorescence quenching and fluoride sensing (On-Off-On) via copper displacement approach, Sens. Actuators, B, 2015, 209, 162–171.

    Article  CAS  Google Scholar 

  56. Guideline for Drinking Water Quality, World Health Organisation, Geneva, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Kumar Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, A.K., Padhan, S.K., Mohanty, J.R. et al. Chromo-luminescent selective detection of fluoride ions by a copper(II) bis(terpyridine) complex solution via a displacement approach. Photochem Photobiol Sci 17, 815–821 (2018). https://doi.org/10.1039/c8pp00108a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00108a

Navigation