Skip to main content
Log in

An Imidazo[1,5-α]Pyridine-Based Fluorometric Chemodosimeter for the Highly Selective Detection of Hypochlorite in Aqueous Media

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorometric chemodosimeter 2-amino-3-(((E)-3-(1-phenylimidazo[1,5-α]pyridin-3-yl)benzylidene)amino)maleonitrile (BPI-MAL) has been designed and synthesized for sensing hypochlorite. BPI-MAL showed a selective turn-on fluorescence for ClO through hypochlorite-promoted de-diaminomaleonitrile reaction. It also could detect ClO in the presence of various competitive anions including reactive oxygen species. Interestingly, sensor BPI-MAL was successfully applied as a fluorescent test kit for ClO determination. The sensing property and mechanism of BPI-MAL toward ClO were studied by fluorescence and UV-vis spectroscopy, NMR titration and DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Applications of supramolecular anion recognition. Chem Rev 115:8038–8155

    Article  CAS  PubMed  Google Scholar 

  2. Lee SY, Kim C (2016) A colorimetric chemosensor for sulfide in a near-perfect aqueous solution: practical application using a test kit. RSC Adv 6:85091–85099

    Article  CAS  Google Scholar 

  3. Goswami S, Paul S, Manna A (2013) Carbazole based hemicyanine dye for both “naked eye” and ‘NIR’ fluorescence detection of CN in aqueous solution: from molecules to low cost devices (TLC plate sticks). Dalton Trans 42:10682–10686

    Article  CAS  PubMed  Google Scholar 

  4. Kim SK, Lee DH, Hong JI, Yoon J (2009) Chemosensors for pyrophosphate. Acc Chem Res 42:23–31

    Article  CAS  PubMed  Google Scholar 

  5. Chen S, Li H, Hou P (2018) A novel imidazo[1,5-α]pyridine-based fluorescent probe with a large stokes shift for imaging hydrogen sulfide. Sensors Actuators B Chem 256:1086–1092

    Article  CAS  Google Scholar 

  6. Yuan Y, Zhang CJ, Xu S, Liu B (2016) A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chem Sci 7:1862–1866

    Article  CAS  PubMed  Google Scholar 

  7. Jeong HY, Lee SY, Kim C (2017) Furan and Julolidine-based “turn-on” fluorescence Chemosensor for detection of F in a near-perfect aqueous solution. J Fluoresc 27:1457–1466

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Lee D, Wu D, Swamy KMK, Yoon J (2018) A new kind of rhodamine-based fluorescence turn-on probe for monitoring ATP in mitochondria. Sensors Actuators B Chem 265:429–434

    Article  CAS  Google Scholar 

  9. Wu WL, Zhao X, Xi LL, Huang MF, Zeng WH, Miao JY, Zhao BX (2017) A mitochondria-targeted fluorescence probe for ratiometric detection of endogenous hypochlorite in the living cells. Anal Chim Acta 950:178–183

    Article  CAS  PubMed  Google Scholar 

  10. Goswami S, Manna A, Paul S, Kheng Quah C, Fun HK (2013) Rapid and ratiometric detection of hypochlorite with real application in tap water: molecules to low cost devices (TLC sticks). Chem Commun 49:11656–11658

    Article  CAS  Google Scholar 

  11. Yuan L, Lin W, Song J, Yang Y (2011) Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem Commun 47:12691–12693

    Article  CAS  Google Scholar 

  12. Fukuzaki S (2006) Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci 11:147–157

    Article  CAS  PubMed  Google Scholar 

  13. Hou JT, Li K, Yang J, Yu KK, Liao YX, Ran YZ, Liu YH, Zhou XD, Yu XQ (2015) Ratiometric fluorescent probe for in situ quantification of basal mitochondrial hypochlorite in cancer cells. Chem Commun 51:6781–6784

    Article  CAS  Google Scholar 

  14. Das S, Aich K, Patra L, Ghoshal K, Gharami S, Bhattacharyya M, Mondal TK (2018) Development of a new fluorescence ratiometric switch for endogenous hypochlorite detection in monocytes of diabetic subjects by dye release method. Tetrahedron Lett 59:1130–1135

    Article  CAS  Google Scholar 

  15. Hawkins CL, Pattison DI, Davies MJ (2003) Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25:259–274

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Song F, Peng X (2016) A versatile fluorescent probe for imaging viscosity and hypochlorite in living cells. Dyes Pigments 125:89–94

    Article  CAS  Google Scholar 

  17. Jiang Y, Wu S, Jin C, Wang B, Shen J (2018) Novel diaminomaleonitrile-based fluorescent probe for ratiometric detection and bioimaging of hypochlorite. Sensors Actuators B Chem 265:365–370

    Article  CAS  Google Scholar 

  18. Zhao Y, Li H, Xue Y, Ren Y, Han T (2017) A phenanthroimidazole-based fluorescent probe for hypochlorous acid with high selectivity and its bio-imaging in living cells. Sensors Actuators B Chem 241:335–341

    Article  CAS  Google Scholar 

  19. Guo J, Zhang Z, Kuai Z, Wang R, Yang Q, Shan Y, Li Y (2017) A new turn-on fluorescent probe towards hypochlorite in living cells. Anal Methods 9:864–870

    Article  CAS  Google Scholar 

  20. Goswami S, Aich K, Das S, Pakhira B, Ghoshal K, Quah CK, Bhattacharyya M, Fun HK, Sarkar S (2015) A triphenyl amine-based solvatofluorochromic dye for the selective and ratiometric sensing of OCl in human blood cells. Chem Asian J 10:694–700

    Article  CAS  PubMed  Google Scholar 

  21. Chen S, Lu J, Sun C, Ma H (2010) A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging. Analyst 135:577–582

    Article  CAS  PubMed  Google Scholar 

  22. Goswami S, Paul S, Manna A (2013) Highly reactive (<1 min) ratiometric “naked eye” detection of hypochlorite with real application in tap water. Dalton Trans 42:10097–10101

    Article  CAS  PubMed  Google Scholar 

  23. Sasikumar T, Ilanchelian M (2017) Colorimetric detection of hypochlorite based on the morphological changes of silver nanoprisms to spherical nanoparticles. Anal Methods 9:3151–3158

    Article  CAS  Google Scholar 

  24. Choi MG, Ryu H, Cho MJ, Lee SK, Chang SK (2017) Dual signaling of hypochlorite in tap water by selective oxidation of phenylselenylated dichlorofluorescein. Sensors Actuators B Chem 244:307–313

    Article  CAS  Google Scholar 

  25. Xiong K, Yin C, Chao J, Zhang Y, Huo F (2016) The detection for hypochlorite by UV–vis and fluorescent spectra based on oxidized ring opening and successive hydrolysis reaction. Spectrochim Acta A Mol Biomol Spectrosc 166:79–83

    Article  CAS  PubMed  Google Scholar 

  26. Ding S, Zhang Q, Xue S, Feng G (2015) Real-time detection of hypochlorite in tap water and biological samples by a colorimetric, ratiometric and near-infrared fluorescent turn-on probe. Analyst 140:4687–4693

    Article  CAS  PubMed  Google Scholar 

  27. Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, Duan Q, Jia P (2018) A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron 107:218–223

    Article  CAS  PubMed  Google Scholar 

  28. Cheng X, Qu S, Zhong Z, Li W (2017) Coumarin-based fluorescent probe for Hypochlorites and real application in tap water. J Fluoresc 27:1427–1433

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Xia J, Han J, Bao X, Li Y, Tang X, Ni L, Wang L, Gao M (2016) A fast-responsive fluorescent probe based on BODIPY dye for sensitive detection of hypochlorite and its application in real water samples. Talanta 161:847–853

    Article  CAS  PubMed  Google Scholar 

  30. Hu Q, Qin C, Huang L, Wang H, Liu Q, Zeng L (2018) Selective visualization of hypochlorite and its fluctuation in cancer cells by a mitochondria-targeting ratiometric fluorescent probe. Dyes Pigments 149:253–260

    Article  CAS  Google Scholar 

  31. Zhang Y, Ma L, Tang C, Pan S, Shi D, Wang S, Li M, Guo Y (2018) A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice. J Mater Chem B 6:725–731

    Article  CAS  Google Scholar 

  32. Vedamalai M, Kedaria D, Vasita R, Gupta I (2018) Oxidation of phenothiazine based fluorescent probe for hypochlorite and its application to live cell imaging. Sensors Actuators B Chem 263:137–142

    Article  CAS  Google Scholar 

  33. Chen P, Zheng Z, Zhu Y, Dong Y, Wang F, Liang G (2017) Bioluminescent turn-on probe for sensing hypochlorite in vitro and in tumors. Anal Chem 89:5693–5696

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Wang X, Feng Y, Zhu M, Yin H, Guo Q, Meng X (2015) A two-photon fluorescent probe for detecting endogenous hypochlorite in living cells. Dalton Trans 44:6613–6619

    Article  CAS  PubMed  Google Scholar 

  35. Thiruppathi M, Thiyagarajan N, Gopinathan M, Chang JL, Zen JM (2017) A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Microchim Acta 184:4073–4080

    Article  CAS  Google Scholar 

  36. Li G, Lin Q, Sun L, Feng C, Zhang P, Yu B, Chen Y, Wen Y, Wang H, Ji L, Chao H (2015) A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo. Biomaterials 53:285–295

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Wang J, Zeng F, Huang S, Huang J, Xie H, Yu C, Wu S (2016) Pyrene derivative emitting red or near-infrared light with monomer/excimer conversion and its application to Ratiometric detection of hypochlorite. ACS Appl Mater Interfaces 8:1511–1519

    Article  CAS  PubMed  Google Scholar 

  38. Chang C, Wang F, Qiang J, Zhang Z, Chen Y, Zhang W, Wang Y, Chen X (2017) Benzothiazole-based fluorescent sensor for hypochlorite detection and its application for biological imaging. Sensors Actuators B Chem 243:22–28

    Article  CAS  Google Scholar 

  39. Qiao L, Nie H, Wu Y, Xin F, Gao C, Jing J, Zhang X (2017) An ultrafast responsive BODIPY-based fluorescent probe for the detection of endogenous hypochlorite in live cells. J Mater Chem B 5:525–530

    Article  CAS  Google Scholar 

  40. Xiao H, Xin K, Dou H, Yin G, Quan Y, Wang R (2015) A fast-responsive mitochondria-targeted fluorescent probe detecting endogenous hypochlorite in living RAW 264.7 cells and nude mouse. Chem Commun 51:1442–1445

    Article  CAS  Google Scholar 

  41. Zang L, Liang C, Wang Y, Bu W, Sun H, Jiang S (2015) A highly specific pyrene-based fluorescent probe for hypochlorite and its application in cell imaging. Sensors Actuators B Chem 211:164–169

    Article  CAS  Google Scholar 

  42. Gong H, Jiang Y, Hou RC, Ding XQ (2016) A sensitive and selective fluorescent coumarin-based probe for detection of hypochlorite ion and its application to cellular imaging. J Fluoresc 26:403–406

    Article  CAS  PubMed  Google Scholar 

  43. Fan J, Mu H, Zhu H, Wang J, Peng X (2015) Light up ClO in live cells using and aza-coumarin based fluorescent probe with fast response and high sesitivity. Analyst 140:4594–4598

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr JAM, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman, JJB, Ortiz V, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03 (Revision B.02). Gaussian, Inc., Wallingford CT

  45. Becke AD (1993) Density-functional thermochemistry. II. The role of exact exchang. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  47. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  48. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  49. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem 102:1995–2001

    Article  CAS  Google Scholar 

  50. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  51. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  52. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  53. Tsui YK, Devaraj S, Yen YP (2012) Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: a new selective chromogenic and fluorogenic sensor for cyanide ion. Sensors Actuators B Chem 161:510–519

    Article  CAS  Google Scholar 

  54. Yang Y, Gao CY, Chen J, Zhang N, Dong D (2016) A pyrene-based fluorescent and colorimetric chemodosimeter for the detection of ClO ions. Anal Methods 8:805–809

    Article  CAS  Google Scholar 

  55. Goswami S, Maity S, Maity AC, Das AK (2014) Fluorometric and naked-eye detectable dual signaling chemodosimeter for hypochlorite. Sensors Actuators B Chem 204:741–745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Research Foundation of Korea and Korea Environment Industry & Technology Institute (NRF-2018R1A2B6001686 and KEITI-2016001970001) kindly supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.M., Yun, D. & Kim, C. An Imidazo[1,5-α]Pyridine-Based Fluorometric Chemodosimeter for the Highly Selective Detection of Hypochlorite in Aqueous Media. J Fluoresc 29, 451–459 (2019). https://doi.org/10.1007/s10895-019-02355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02355-7

Keywords

Navigation