Skip to main content
Log in

Effect of solar ultraviolet radiation exposure on serum 25(OH)D concentration: a pilot randomised controlled trial

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Sunlight generates vitamin D, but there are scant human data from randomised trials on which to base health policy advice about how much sun exposure is necessary to change 25(OH)D concentrations. The purpose of the study was to evaluate the feasibility of using solar ultraviolet (UV) radiation exposure to generate a change in 25(OH)D concentration in a randomised controlled trial (RCT). The intervention tested in this RCT was supervised exposure to one standard erythemal dose (SED; 100 J m−2) of solar UV radiation three days per week for three weeks with approximately 35% of the body surface area not covered by clothing. Thirty-six fair-skinned (skin type II and III) indoor workers from Brisbane, Australia were randomised into either the intervention group (n = 16) or the control group (n = 20); the latter did not receive any supervised sun exposure. We asked both groups to use sunscreen and to minimise time outdoors during the study period. We collected blood samples at baseline, once per week during the three week intervention period, and four weeks after the intervention finished. The cumulative UV radiation exposure over the intervention period measured using polysulphone badges was higher in the intervention group than in the control group (median 8 vs. 4 SEDs, p = 0.14). After three weeks, the mean serum 25(OH)D concentration increased from 60 to 65 nmol l−1 in the intervention group and from 55 to 57 nmol l−1 in the control group. After adjustment for baseline 25(OH)D, the mean change per week during the intervention phase was non-significantly higher in the intervention than in the control group (0.7 vs. 0.3; p = 0.35). This difference was not sustained during the follow-up period. Large field trials are needed to inform policy about how much natural sun exposure is required to raise 25(OH)D concentrations. This pilot identified key issues that need to be considered in the design of such a trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Autier, M. Boniol, C. Pizot and P. Mullie, Vitamin D status and ill health: A systematic review, Lancet Diabetes Endocrinol., 2014, 2, 76–89.

    Article  CAS  PubMed  Google Scholar 

  2. D. A. Hanley, A. Cranney, G. Jones, S. J. Whiting, W. D. Leslie, D. E. Cole, S. A. Atkinson, R. G. Josse, S. Feldman and G. A. Kline, Vitamin D in adult health and disease: A review and guideline statement from osteoporosis Canada, Can. Med. Assoc. J., 2010, 182, E610–E618.

    Article  Google Scholar 

  3. D. D. Bikle, Vitamin D metabolism, mechanism of action, and clinical applications, Chem. Biol., 2014, 21, 319–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. F. DeLuca, Overview of general physiologic features and functions of vitamin D, Am. J. Clin. Nutr., 2004, 80, 1689s–1696s.

    Article  CAS  PubMed  Google Scholar 

  5. Osteoporosis Australia, Vitamin D, http://www.osteoporosis.org.au/vitamin-d, (accessed 20/05/2017, 2017).

  6. Australian Bureau of Statistics, Vitamin D, http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.006Chapter2002011-12.

  7. J. D'Orazio, S. Jarrett, A. Amaro-Ortiz and T. Scott, UV radiation and the skin, Int. J. Mol. Sci., 2013, 14, 12222–12248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. M. Janda, M. Kimlin, D. Whiteman, J. Aitken and R. Neale, Sun protection and low levels of vitamin D: Are people concerned?, Cancer Causes Control, 2007, 18, 1015–1019.

    Article  PubMed  Google Scholar 

  9. M. Janda, M. Kimlin, D. C. Whiteman, J. F. Aitken and R. E. Neale, Sun protection messages, vitamin D and skin cancer: Out of the frying pan and into the fire?, Med. J. Aust., 2007, 186, 52–54.

    Article  PubMed  Google Scholar 

  10. J. H. Kim and S. J. Moon, Time spent outdoors and seasonal variation in serum concentrations of 25-hydroxyvitamin D in Korean women, Int. J. Food Sci. Nutr., 2000, 51, 439–451.

    Article  CAS  PubMed  Google Scholar 

  11. K. Nakamura, M. Nashimoto and M. Yamamoto, Summer/ winter differences in the serum 25-hydroxyvitamin D3 and parathyroid hormone levels of Japanese women, Int. J. Biometeorol., 2000, 44, 186–189.

    Article  CAS  PubMed  Google Scholar 

  12. A. Bener, M. Al-Ali and G. F. Hoffmann, High prevalence of vitamin D deficiency in young children in a highly sunny humid country: A global health problem, Minerva Pediatr., 2009, 61, 15–22.

    CAS  PubMed  Google Scholar 

  13. N. Binkley, R. Novotny, D. Krueger, T. Kawahara, Y. G. Daida, G. Lensmeyer, B. W. Hollis and M. K. Drezner, Low vitamin D status despite abundant sun exposure, J. Clin. Endocrinol. Metab., 2007, 92, 2130–2135.

    Article  CAS  PubMed  Google Scholar 

  14. M. Brustad, K. Edvardsen, T. Wilsgaard, O. Engelsen, L. Aksnes and E. Lund, Seasonality of UV-radiation and vitamin D status at 69 degrees north, Photochem. Photobiol. Sci., 2007, 6, 903–908.

    Article  CAS  PubMed  Google Scholar 

  15. G. Jones, T. Dwyer, K. L. Hynes, V. Parameswaran and T. M. Greenaway, Vitamin D insufficiency in adolescent males in Southern Tasmania: Prevalence, determinants, and relationship to bone turnover markers, Osteoporosis Int., 2005, 16, 636–641.

    Article  CAS  Google Scholar 

  16. S. Perampalam, K. Ganda, K. A. Chow, N. Opie, P. E. Hickman, B. Shadbolt, A. Hennessy, H. Grunstein and C. J. Nolan, Vitamin D status and its predictive factors in pregnancy in 2 Australian populations, Aust. N. Z. J. Obstet. Gynaecol., 2011, 51, 353–359.

    Article  PubMed  Google Scholar 

  17. V. Nair-Shalliker, M. Clements, M. Fenech and B. K. Armstrong, Personal sun exposure and serum 25-hydroxy vitamin D concentrations, Photochem. Photobiol., 2013, 89, 208–214.

    Article  CAS  PubMed  Google Scholar 

  18. M. G. Kimlin, R. M. Lucas, S. L. Harrison, I. van der Mei, B. K. Armstrong, D. C. Whiteman, A. Kricker, M. Nowak, A. M. Brodie and J. Sun, The contributions of solar ultraviolet radiation exposure and other determinants to serum 25-hydroxyvitamin D concentrations in Australian adults: The AusD Study, Am. J. Epidemiol., 2014, 179, 864–874.

    Article  PubMed  Google Scholar 

  19. S. S. Harris and B. Dawson-Hughes, Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women, Am. J. Clin. Nutr., 1998, 67, 1232–1236.

    Article  CAS  PubMed  Google Scholar 

  20. M. T. Hannan, H. J. Litman, A. B. Araujo, C. E. McLennan, R. R. McLean, J. B. McKinlay, T. C. Chen and M. F. Holick, Serum 25-hydroxyvitamin D and bone mineral density in a racially and ethnically diverse group of men, J. Clin. Endocrinol. Metab., 2008, 93, 40–46.

    Article  CAS  PubMed  Google Scholar 

  21. M. L. Ho, H. C. Yen, R. C. Tsang, B. L. Specker, X. C. Chen and B. L. Nichols, Randomized study of sunshine exposure and serum 25-OHD in breast-fed infants in Beijing, China, J. Pediatr., 1985, 107, 928–931.

    Article  CAS  PubMed  Google Scholar 

  22. I. R. Reid, D. J. Gallagher and J. Bosworth, Prophylaxis against vitamin D deficiency in the elderly by regular sunlight exposure, Age Ageing, 1986, 15, 35–40.

    Article  CAS  PubMed  Google Scholar 

  23. G. A. Lovell, J. L. Byth, P. W. Craswell, P. A. Phillips and M. J. Thomas, The influence of sunlight or dietary vitamin D on plasma 25-hydroxyvitamin D in institutionalized elderly patients in a sub-tropical climate, J. Hum. Nutr. Diet, 1988, 1, 163–170.

    Article  Google Scholar 

  24. H. Dahifar, A. Faraji, A. Ghorbani and S. Yassobi, Impact of dietary and lifestyle on vitamin D in healthy student girls aged 11-15 years, J. Med. Invest., 2006, 53, 204–208.

    Article  PubMed  Google Scholar 

  25. S. H. Lee, S. J. Park, K. M. Kim, D. J. Lee, W. J. Kim, R. W. Park and N. S. Joo, Effect of sunlight exposure on serum 25-hydroxyvitamin D concentration in women with vitamin D deficiency: Using ambulatory lux meter and sunlight exposure questionnaire, Korean J. Fam. Med., 2012, 33, 381–389.

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. Dawodu, J. Kochiyil and N. Altaye, Pilot study of sunlight exposure and vitamin D status in Arab women of childbearing age, East Mediterr. Health J., 2011, 17, 570–574.

    Article  CAS  PubMed  Google Scholar 

  27. I. S. Wicherts, A. J. P. Boeke, I. M. Van Der Meer, N. M. Van Schoor, D. L. Knol and P. Lips, Sunlight exposure or vitamin D supplementation for vitamin D-deficient nonwestern immigrants: A randomized clinical trial, Osteoporosis Int., 2011, 22, 873–882.

    Article  CAS  Google Scholar 

  28. P. Datta, M. K. Bogh, P. Olsen, P. Eriksen, A. V. Schmedes, M. M.-L. Grage, P. A. Philipsen and H. C. Wulf, Increase in serum 25-hydroxyvitamin-D-3 in humans after solar exposure under natural conditions compared to artificial UVB exposure of hands and face, Photochem. Photobiol. Sci., 2012, 11, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  29. B. Petersen, H. C. Wulf, M. P. Triguero-Mas, P. A. Philipsen, E. Thieden, P. Olsen, J. Heydenreich, P. Dadvand, X. Basagaňa, T. S. Liljendahl, G. I. Harrison, D. S. Segerbäck, A. W. Schmalwieser, A. R. Young and M. J. Nieuwenhuijsen, Sun and ski holidays improve vitamin D status, but are associated with high levels of DNA damage, J. Invest. Dermatol., 2014, 134, 2806–2813.

    Article  CAS  PubMed  Google Scholar 

  30. M. Grigalavicius, J. Moan, A. Dahlback and A. Juzeniene, Vitamin D and ultraviolet phototherapy in Caucasians, J. Photochem. Photobiol., B, 2015, 147, 69–74.

    Article  CAS  Google Scholar 

  31. A. J. Samanek, E. J. Croager, P. Gies, E. Milne, R. Prince, A. J. McMichael, R. M. Lucas and T. Slevin, Estimates of beneficial and harmful sun exposure times during the year for major Australian population centres, Med. J. Aust., 2006, 184, 338–341.

    Article  PubMed  Google Scholar 

  32. A. M. Brodie, R. Lucas, S. Harrison, I. A. van der Mei, B. Armstrong, A. Kricker, R. Mason, A. J. McMichael, M. Nowak and D. C. Whiteman, The AusD Study: A population-based study of the determinants of serum 25-hydroxyvitamin D concentration across a broad latitude range, Am. J. Epidemiol., 2013, 177, 894–903.

    Article  CAS  PubMed  Google Scholar 

  33. M. W. Clarke, R. C. Tuckey, S. Gorman, B. Holt and P. H. Hart, Optimized 25-hydroxyvitamin D analysis using liquid-liquid extraction with 2D separation with LC/MS/MS detection, provides superior precision compared to conventional assays, Metabolomics, 2013, 9, 1031–1040.

    Article  CAS  Google Scholar 

  34. A. A. Albarhani, F. Collier, R. F. Greaves, A.-L. Ponsonby, K. J. Allen, P. J. Vuillermin, P. Roche and M. W. Clarke, Vitamins D and A can be successfully measured by LC-MS/ MS in cord blood diluted plasma, Clin. Biochem., 2015, 48, 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  35. A. R. Webb, P. Weihs and M. Blumthaler, Spectral UV irradiance on vertical surfaces: A case study, Photochem. Photobiol., 1999, 69, 464–470.

    Article  CAS  PubMed  Google Scholar 

  36. R. E. Neale, A. R. Hamilton, M. Janda, P. Gies and A. C. Green, Seasonal variation in measured solar ultraviolet radiation exposure of adults in subtropical Australia, Photochem. Photobiol., 2010, 86, 445–448.

    Article  CAS  PubMed  Google Scholar 

  37. E. Thieden, M. S. Âgren and H. C. Wulf, The wrist is a reliable body site for personal dosimetry of ultraviolet radiation, Photodermatol., Photoimmunol. Photomed., 2000, 16, 57–61.

    Article  CAS  Google Scholar 

  38. N. Downs and A. Parisi, Mean exposure fractions of human body solar UV exposure patterns for application in different ambient climates, Photochem. Photobiol., 2012, 88, 223–226.

    Article  CAS  PubMed  Google Scholar 

  39. L. E. Rhodes, A. R. Webb, H. I. Fraser, R. Kift, M. T. Durkin, D. Allan, S. J. O'Brien, A. Vail and J. L. Berry, Recommended summer sunlight exposure levels can produce sufficient (> or = 20 ng ml(-1)) but not the proposed optimal (> or = 32 ng ml(-1)) 25(OH)D levels at UK latitudes, J. Invest. Dermatol., 2010, 130, 1411–1418.

    Article  CAS  PubMed  Google Scholar 

  40. V. G. M. Chel, M. E. Ooms, S. Pavel, F. de Gruijl, A. Brand and P. Lips, Prevention and treatment of vitamin D deficiency in Dutch psychogeriatric nursing home residents by weekly half-body UVB exposure after showering: A pilot study, Age Ageing, 2011, 40, 211–214.

    Article  CAS  PubMed  Google Scholar 

  41. K. Edvardsen, M. Brustad, O. Engelsen and L. Aksnes, The solar UV radiation level needed for cutaneous production of vitamin D3 in the face. A study conducted among subjects living at a high latitude (68° n), Photochem. Photobiol. Sci., 2007, 6, 57–62.

    Article  CAS  PubMed  Google Scholar 

  42. M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation, J. Invest. Dermatol., 2010, 130, 546–553.

    Article  CAS  PubMed  Google Scholar 

  43. L. D. Carbone, E. W. Rosenberg, E. A. Tolley, M. F. Holick, T. A. Hughes, M. A. Watsky, K. D. Barrow, T. C. Chen, N. K. Wilkin, S. K. Bhattacharya, J. C. Dowdy, R. M. Sayre and K. T. Weber, 25-hydroxyvitamin D, cholesterol, and ultraviolet irradiation, Metabolism, 2008, 57, 741–748.

    Article  CAS  PubMed  Google Scholar 

  44. N. Jayaratne, A. Russell and J. C. van der Pols, Sun protection and vitamin D status in an Australian subtropical community, Prev. Med., 2012, 55, 146–150.

    Article  PubMed  Google Scholar 

  45. R. Marks, P. A. Foley, D. Jolley, K. R. Knight, J. Harrison and S. C. Thompson, The effect of regular sunscreen use on vitamin D levels in an Australian population. Results of a randomized controlled trial, Arch. Dermatol., 1995, 131, 415–421.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Centre for Research Excellence Grant (APP1001456) from the National Health and Medical Research Council (NHMRC) of Australia. SRK was funded by a PhD scholarship from the NHMRC Centre for Research Excellence in Sun and Health. REN, RML and DCW are supported by fellowships from the NHMRC. MGK is supported by the Cancer Council Queensland. MJ is funded by NHMRC Career Development fellowship. MWC is affiliated to Metabolomics Australia, UWA, which is supported by infrastructure funding from the Western Australia State Government in partnership with the Australian Federal Government, through Bioplatforms Australia and the National Collaborative Research Infrastructure Strategy (NCRIS). The serum 25(OH)D testing in this study was subsidized by NCRIS. We thank all the participants who took part in the study. We also gratefully acknowledge Dr David Smith for statistical support and Mr Sam Vaartjes for assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanchita R. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.R., Whiteman, D.C., Kimlin, M.G. et al. Effect of solar ultraviolet radiation exposure on serum 25(OH)D concentration: a pilot randomised controlled trial. Photochem Photobiol Sci 17, 570–577 (2018). https://doi.org/10.1039/c7pp00378a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00378a

Navigation