Skip to main content

Advertisement

Log in

A two-photon off-on fluorescence probe for imaging thiols in live cells and tissues

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A two-photon (TP) fluorescence imaging probe (Z1) was designed to detect biothiols through a photoinduced electron transfer pathway utilizing N-butyl-naphthalimide as the fluorophore and 2,4-dinitrobenzene-sulfonyl as the responsive group, which were linked together by piperazine. The synthesized Z1 displayed high selectivity to biothiols, significant fluorescence off–on properties, and a marked two-photon absorption cross section (δ = 110 GM). Moreover, Z1 showed good biocompatibility and insensitivity toward changes in the biologically relevant pH range (7.2–8.4), which enabled the utilization of Z1 to monitor biothiol levels not only in live cells but also in tissues at depths of 50–250 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Zipfel, R. M. Williams and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol., 2003, 21, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  2. D. J. Christensen and M. Nedergaard, Two-photon in vivo imaging of cells, Pediatr. Nephrol., 2011, 26, 1483–1489.

    Article  PubMed  Google Scholar 

  3. P. T. So, Two photon Fluorescence Light Microscopy, 2001, eLS.

    Book  Google Scholar 

  4. W. Denk, J. H. Strickler and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, 1990, 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  5. S. Mathai, D. K. Bird, S. S. Stylli, T. A. Smith and K. P. Ghiggino, Two-photon absorption cross-sections and time-resolved fluorescence imaging using porphyrin photosensitisers, Photochem. Photobiol. Sci., 2007, 6, 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  6. Z. Liu, X. Xiong, Y. Li, S. Li and J. Qin, Synthesis, optical properties and singlet oxygen generation of a phthalocyanine derivative containing strong two-photon-absorbing chromophores in the periphery, Photochem. Photobiol. Sci., 2011, 10, 1804–1809.

    Article  CAS  PubMed  Google Scholar 

  7. A. Hayek, F. Bolze, J. F. Nicoud, P. L. Baldeck, Y. Mély, Synthesis and characterization of water-soluble two-photon excited blue fluorescent chromophores for bioimaging, Photochem. Photobiol. Sci., 2006, 5, 102–106.

    Article  CAS  PubMed  Google Scholar 

  8. H. M. Kim and B. R. Cho, Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues, Acc. Chem. Res., 2009, 42, 863–872.

    Article  CAS  PubMed  Google Scholar 

  9. D. Kim, H. G. Ryu and K. H. Ahn, Recent development of two-photon fluorescent probes for bioimaging, Org. Biomol. Chem., 2014, 12, 4550–4566.

    Article  CAS  PubMed  Google Scholar 

  10. H. M. Kim and B. R. Cho, Small-Molecule Two-Photon Probes for Bioimaging Applications, Chem. Rev., 2015, 115, 5014–5055.

    Article  CAS  PubMed  Google Scholar 

  11. A. Hayek, F. Bolze, C. Bourgogne, P. L. Baldeck, P. Didier, Y. Arntz and J. F. Nicoud, Boron containing two-photon absorbing chromophores. 2. Fine tuning of the one-and two-photon photophysical properties of pyrazabole based fluorescent bioprobes, Inorg. Chem., 2009, 48, 9112–9119.

    Article  CAS  PubMed  Google Scholar 

  12. H. M. Kim, M. S. Seo, M. J. An, J. H. Hong, Y. S. Tian, J. H. Choi and B. R. Cho, Two-Photon Fluorescent Probes for Intracellular Free Zinc Ions in Living Tissue, Angew. Chem., Int. Ed., 2008, 120, 5245–5248.

    Article  Google Scholar 

  13. L. Xue, Z. Fang, G. Li, H. Wang and H. Jiang, Ratiometric fluorescent sensors for detecting zinc ions in aqueous solution and living cells with two-photon microscopy, Sens. Actuators, B, 2011, 156, 410–415.

    Article  CAS  Google Scholar 

  14. C. Huang, J. Qu, J. Qi, M. Yan and G. Xu, Dicyanostilbene-derived two-photon fluorescence probe for free zinc ions in live cells and tissues with a large two-photon action cross section, Org. Lett., 2011, 13, 1462–1465.

    Article  CAS  PubMed  Google Scholar 

  15. C. Huang, X. Peng, D. Yi, J. Qu and H. Niu, Dicyanostilbene-based two-photon thermo-solvatochromic fluorescence probes with large two-photon absorption cross sections: Detection of solvent polarities, viscosities, and temperature, Sens. Actuators, B, 2013, 182, 521–529.

    Article  CAS  Google Scholar 

  16. J. Yin, Y. Kwon, D. Kim, D. Lee, G. Kim, Y. Hu and J. Yoon, Cyanine-Based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues, J. Am. Chem. Soc., 2014, 136, 5351–5358.

    Article  CAS  PubMed  Google Scholar 

  17. S. Y. Lim, K. H. Hong, D. I. Kim, H. Kwon and H. J. Kim, Tunable Heptamethine-Azo Dye Conjugate as an NIR Fluorescent Probe for the Selective Detection of Mitochondrial Glutathione over Cysteine and Homocysteine, J. Am. Chem. Soc., 2014, 136, 7018–7025.

    Article  CAS  PubMed  Google Scholar 

  18. R. Wang, L. X. Chen, P. Liu, Q. Zhang and Y. Q. Wang, Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tissues, Chem.–Eur. J., 2012, 18, 11343–11349.

    Article  CAS  PubMed  Google Scholar 

  19. D. Kim, S. Sambasivan, H. Nam, K. H. Kim, J. Y. Kim, T. Joo and K. H. Ahn, Reaction-based two-photon probes for in vitro analysis and cellular imaging of monoamine oxidase activity, Chem. Commun., 2012, 48, 6833–6835.

    Article  CAS  Google Scholar 

  20. D. E. Kang, C. S. Lim, J. Y. Kim, E. S. Kim, H. J. Chun and B. R. Cho, A Two-Photon Probe for Cu2+ with an Internal Reference: Quantitative Estimation of Cu2+ in Human Tissues by Two-Photon Microscopy, Anal. Chem., 2014, 86, 353–5359.

    Google Scholar 

  21. P. Li, W. Zhang, K. Li, X. Liu, H. Xiao, W. Zhang and B. Tang, Mitochondria-Targeted Reaction-Based Two-Photon Fluorescent Probe for Imaging of Superoxide Anion in Live Cells and in Vivo, Anal. Chem., 2013, 85, 9877–9881.

    Article  CAS  PubMed  Google Scholar 

  22. D. P. Kizhmuri, S. Sreejith, A. Pichandi, Y. Kang, Q. Peng, S. K. Maji and A. Ajayaghosh, A Ratiometric Fluorescent Molecular Probe with Enhanced Two-photon Response upon Zn2+ Binding for in vitro and in vivo Bioimaging, Chem. Sci., 2014, 5, 3469–3474.

    Article  Google Scholar 

  23. Y. M. Poronik, G. Clermont, M. Blanchard-Desce and D. T. Gryko, Nonlinear Optical Chemosensor for Sodium Ion Based on Rhodol Chromophore, J. Org. Chem., 2013, 78, 11721–11732.

    Article  CAS  PubMed  Google Scholar 

  24. L. Zhou, X. Zhang, Q. Wang, Y. Lv, G. Mao, A. Luo and W. Tan, Molecular Engineering of a TBET-Based Two-Photon Fluorescent Probe for Ratiometric Imaging of Living Cells and Tissues, J. Am. Chem. Soc., 2014, 136, 9838–9841.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Mao, L. Hu, X. Dong, C. Zhong, B. F. Liu and Z. Liu, Highly Sensitive Quinoline-Based Two-Photon Fluorescent Probe for Monitoring Intracellular Free Zinc Ions, Anal. Chem., 2014, 86, 6548–6554.

    Article  CAS  PubMed  Google Scholar 

  26. X. Meng, W. Ye, S. Wang, Y. Feng, M. Chen, M. Zhu and Q. Guo, A ratiometric two-photon fluorescent probe for cysteine and homocysteine in living cells, Sens. Actuators, B, 2014, 201, 520–525.

    Article  CAS  Google Scholar 

  27. Y. Q. Sun, J. Liu, H. Zhang, Y. Huo, X. Lv, Y. Shi and W. Guo, A Mitochondria-Targetable Fluorescent Probe for Dual-Channel NO Imaging Assisted by Intracellular Cysteine and Glutathione, J. Am. Chem. Soc., 2014, 136, 12520–12523.

    Article  CAS  PubMed  Google Scholar 

  28. G. Song, F. Miao, Y. Sun, X. Yu, J. Z. Sun and W. Y. Wong, Fluorescence turn-on probes for intracellular RNA distribution and their imaging in confocal and two-photon fluorescence microscopy, Sens. Actuators, B, 2012, 173, 329–337.

    Article  CAS  Google Scholar 

  29. Y. Hu, C. H. Heo, G. Kim, E. J. Jun, J. Yin, H. M. Kim and J. Yoon, One-Photon and Two-Photon Sensing of Biothiols Using a Bis-Pyrene-Cu(II) Ensemble and Its Application To Image GSH in the Cells and Tissues, Anal. Chem., 2015, 87, 3308–3313.

    Article  CAS  PubMed  Google Scholar 

  30. H. J. Kim, C. H. Heo and H. M. Kim, Benzimidazole-Based Ratiometric Two-Photon Fluorescent Probes for Acidic pH in Live Cells and Tissues, J. Am. Chem. Soc., 2013, 135, 17969–17977.

    Article  CAS  PubMed  Google Scholar 

  31. G. J. Mao, T. T. Wei, X. X. Wang, S. Y. Huan, D. Q. Lu, J. Zhang and R. Q. Yu, High-Sensitivity Naphthalene-Based Two-Photon Fluorescent Probe Suitable for Direct Bioimaging of H2S in Living Cells, Anal. Chem., 2013, 85, 7875–7881.

    Article  CAS  PubMed  Google Scholar 

  32. L. Li, C. W. Zhang, G. Y. Chen, B. Zhu, C. Chai, Q. H. Xu and S. Q. Yao, A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson’s disease models, Nat. Commun., 2014, 5, 3276.

    Article  PubMed  CAS  Google Scholar 

  33. A. R. Sarkar, C. H. Heo, M. Y. Park, H. W. Lee and H. M. Kim, A small molecule two-photon fluorescent probe for intracellular sodium ions, Chem. Commun., 2014, 50, 1309–1312.

    Article  CAS  Google Scholar 

  34. S. K. Bae, C. H. Heo, D. J. Choi, D. Sen, E. H. Joe, B. R. Cho and H. M. Kim, A ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H2S production in Parkinson’s disease gene knockout astrocytes, J. Am. Chem. Soc., 2013, 135, 9915–9923.

    Article  CAS  PubMed  Google Scholar 

  35. H. W. Lee, C. H. Heo, D. Sen, H. O. Byun, I. H. Kwak, G. Yoon and H. M. Kim, Ratiometric Two-Photon Fluorescent Probe for Quantitative Detection of β-Galactosidase Activity in Senescent Cells, Anal. Chem., 2014, 86, 10001–10005.

    Article  CAS  PubMed  Google Scholar 

  36. A. R. Sarkar, C. H. Heo, E. Kim, H. W. Lee, H. Singh, J. J. Kim and H. M. Kim, A cysteamine-selective two-photon fluorescent probe for ratiometric bioimaging, Chem. Commun., 2015, 51, 2407–2410.

    Article  CAS  Google Scholar 

  37. J. H. Lee, C. S. Lim, Y. S. Tian, J. H. Han and B. R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc., 2010, 1216–1217.

    Google Scholar 

  38. J. F. Zhang, C. S. Lim, S. Bhuniya, B. R. Cho and J. S. Kim, A highly selective colorimetric and ratiometric two-photon fluorescent probe for fluoride ion detection, Org. Lett., 2011, 13, 1190–1193.

    Article  CAS  PubMed  Google Scholar 

  39. C. S. Lim, G. Masanta, H. J. Kim, J. H. Han, H. M. Kim and B. R. Cho, Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe, J. Am. Chem. Soc., 2011, 133, 11132–11135.

    Article  CAS  PubMed  Google Scholar 

  40. T. Liu, X. Zhang, Q. Qiao, C. Zou, L. Feng, J. Cui and Z. Xu, A two-photon fluorescent probe for imaging hydrogen sulfide in living cells, Dyes Pigm., 2013, 99, 537–542.

    Article  CAS  Google Scholar 

  41. X. L. Liu, X. J. Du, C. G. Dai and Q. H. Song, Ratiometric two-photon fluorescent probes for mitochondrial hydrogen sulfide in living cells, J. Am. Chem. Soc., 2014, 79, 9481–9489.

    CAS  Google Scholar 

  42. D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas and M. R. Wasielewski, Excited doublet states of electrochemically generated aromatic imide and diimide radical anions, J. Phys. Chem. A, 2000, 104, 6545–6551.

    Article  CAS  Google Scholar 

  43. R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger and T. Gunnlaugsson, Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1, 8-naphthalimide-based chemosensors, Chem. Soc. Rev., 2010, 39, 3936–3953.

    Article  CAS  PubMed  Google Scholar 

  44. Z. A. Wood, E. Schroder, J. R. Harris and L. B. Poole, Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci., 2003, 28, 32–40.

    Article  CAS  PubMed  Google Scholar 

  45. T. D. Dalton, H. G. Shertzer and A. Puga, Regulation of gene expression by reactive oxygen, Annu. Rev. Pharmacol., 1999, 39, 67–101.

    Article  CAS  Google Scholar 

  46. F. J. T. Staal, S. W. Ela, M. Roederer, M. T. Anderson, L. A. Herzenberg and L. A. Herzenberg, Glutathione Deficiency and Human-Immunodeficiency-Virus Infection, Lancet, 1992, 339, 909–912.

    Article  CAS  PubMed  Google Scholar 

  47. S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode, Anal. Chem., 2001, 73, 5972–5978.

    Article  CAS  PubMed  Google Scholar 

  48. D. W. Jacobsen, Homocysteine and vitamins in cardiovascular disease, Clin. Chem., 1998, 44, 1833–1843.

    Article  CAS  PubMed  Google Scholar 

  49. H. Refsum, P. M. Ueland, O. Nygard and S. E. Vollset, Homocysteine and cardiovascular disease, Annu. Rev. Med., 1998, 49, 31–62.

    Article  CAS  PubMed  Google Scholar 

  50. S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B. D’Agostino, P. W. F. Wilson and P. A. Wolf, Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease, N. Engl. J. Med., 2002, 346, 476–483.

    Article  CAS  PubMed  Google Scholar 

  51. X. Chen, Y. Zhou, X. J. Peng and J. Yoon, Fluorescent and colorimetric probes for detection of thiols, Chem. Soc. Rev., 2010, 39, 2120–2135.

    Article  CAS  PubMed  Google Scholar 

  52. Q. Q. Wu, Z. F. Xiao, X. J. Du and Q. H. Song, A novel ratiometric two-photon fluorescent probe for the detection of biothiols in solution and imaging of living cells, Chem.–Asian J., 2013, 8, 2564–2568.

    Article  CAS  PubMed  Google Scholar 

  53. S. Singha, D. Kim, A. S. Rao, T. Wang, K. H. Kim, K. H. Lee, K. T. Kim and K. H. Ahn, Two-photon probes based on arylsulfonyl azides: Fluorescence detection and imaging of biothiols, Dyes Pigm., 2013, 99, 308–315.

    Article  CAS  Google Scholar 

  54. D. Kand, A. M. Kalle, S. J. Varma and P. Talukdar, A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging, Chem. Commun., 2012, 48, 2722–2724.

    Article  CAS  Google Scholar 

  55. H. Guo, Y. Jing, X. Yuan, S. Ji, J. Zhao, X. Li and Y. Kan, Highly selective fluorescent OFF-ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2,4-dinitrobenzenesulfonyl subunits, Org. Biomol. Chem., 2011, 9, 3844–3853.

    Article  CAS  PubMed  Google Scholar 

  56. Z. Wang, D. M. Han, W. P. Jia, Q. Z. Zhou and W. P. Deng, Reaction-based fluorescent probe for selective discrimination of thiophenols over aliphaticthiols and its application in water samples, Anal. Chem., 2012, 84, 4915–4920.

    Article  CAS  PubMed  Google Scholar 

  57. S. Ji, H. Guo, X. Yuan, X. Li, H. Ding, P. Gao, C. Zhao, W. Wu, W. Wu and J. Zhao, A highly selective OFF-ON red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime, Org. Lett., 2010, 12, 2876–2879.

    Article  CAS  PubMed  Google Scholar 

  58. W. Jiang, Q. Fu, H. Fan, J. Ho and W. Wang, A highly selective fluorescent probe for thiophenols, Angew. Chem., Int. Ed., 2007, 46, 8445–8448.

    Article  CAS  Google Scholar 

  59. N. S. Makarov, M. Drobizhev and A. Rebane, Two-photon absorption standards in the 550–1600 nm excitation wavelength range, Opt. Express, 2008, 16, 4029–4047.

    Article  CAS  PubMed  Google Scholar 

  60. M. A. Albota, C. Xu and W. W. Webb, Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Opt., 1998, 37, 7352–7356.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Zhang.

Additional information

Electronic supplementary information (ESI) available: Characteristic (1H NMR, 13C NMR, and HRMS spectra), UV-Vis absorption and fluorescence spectra and two-photon action cross section measurement. See DOI: 10.1039/c5pp00468c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, Y., Zan, W. et al. A two-photon off-on fluorescence probe for imaging thiols in live cells and tissues. Photochem Photobiol Sci 15, 412–419 (2016). https://doi.org/10.1039/c5pp00468c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00468c

Navigation