Skip to main content
Log in

Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Assessment of partial pressure of oxygen (pO2) by luminescence lifetime measurements of ruthenium coordination complexes has been studied intensively during the last few decades. RuPhen (dichlorotris(1,10-phenanthroline) ruthenium(ii) hydrate) is a water soluble molecule that has been tested previously for in vivo pO2 detection. In this work we intended to shed light on the production of singlet oxygen by RuPhen. The quantum yield of singlet oxygen production by RuPhen dissolved in 0.9% aqueous NaCl solution (pH = 6) was measured at physiological temperatures (285-310 K) and various concentrations of molecular oxygen. In order to minimize the bleaching of RuPhen, the samples were excited with low power (<2 mW) laser pulses (20 μs long), created by pulsing a cw laser beam with an acousto-optical modulator. We show that, whereas the RuPhen phosphorescence lifetime decreases rapidly with an increase of temperature (keeping the oxygenation level constant), the quantum yield of singlet oxygen production by RuPhen is almost identical in the temperature range of 285-310 K. For air-saturated conditions at 310 K the measured quantum yield is about 0.25. The depopulation rate constants of the RuPhen 3MLCT (metal-to-ligand charge-transfer) state are determined in the absence and in the presence of oxygen. We determined that the excitation energy for the RuPhen 3MLCT→d-d transition is 49 kJ mol−1 in the 0.9% NaCl solution (pH = 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Wilson, M. S. Patterson, Phys. Med. Biol., 2008, 53, R61–R109.

    Article  CAS  PubMed  Google Scholar 

  2. A. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. A. Robertson, D. H. Evans, H. Abraharnse, J. Photochem. Photobiol., B, 2009, 96, 1–8.

    Article  CAS  Google Scholar 

  4. R. P. Mason, D. Zhao, J. Pacheco-Torres, W. Cui, V. D. Kodibagkar, P. K. Gulaka, G. Hao, P. Thorpe, E. V. Hahn, P. Peschke, Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 259–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. M. R. Horsman, Int. J. Radiat. Oncol., Biol., Phys., 1998, 42, 701–704.

    Article  CAS  Google Scholar 

  6. F. Piffaretti, A. M. Novello, R. S. Kumar, E. Forte, C. Paulou, P. Nowak-Sliwinska, H. van den Bergh, G. Wagnieres, J. Biomed. Opt., 2012, 17, 115007.

  7. J. H. Woodhams, A. J. MacRobert, S. G. Bown, Photochem. Photobiol. Sci., 2007, 6, 1246–1256.

    Article  CAS  PubMed  Google Scholar 

  8. J. P. T. Ward, Bba-Bioenerg., 2008, 1777, 1–14.

    Article  CAS  Google Scholar 

  9. S. Lahiri, A. Roy, S. M. Baby, T. Hoshi, G. L. Semenza, N. R. Prabhakar, Prog. Biophys. Mol. Biol., 2006, 91, 249–286.

    Article  CAS  PubMed  Google Scholar 

  10. D. B. Papkovsky, R. I. Dmitriev, Chem. Soc. Rev., 2013, 42, 8700–8732.

    Article  CAS  PubMed  Google Scholar 

  11. R. I. Dmitriev, D. B. Papkovsky, Cell. Mol. Life Sci., 2012, 69, 2025–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. J. C. M. Sterenborg, J. W. de Wolf, M. Koning, B. Kruijt, A. van den Heuvel, D. J. Robinson, Opt. Express, 2004, 12, 1873–1878.

    Article  CAS  PubMed  Google Scholar 

  13. J. M. Vanderkooi, G. Maniara, T. J. Green, D. F. Wilson, J. Biol. Chem., 1987, 262, 5476–5482.

    Article  CAS  PubMed  Google Scholar 

  14. D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, S. A. Vinogradov, J. Appl. Physiol., 2006, 101, 1648–1656.

    Article  CAS  PubMed  Google Scholar 

  15. T. K. Stepinac, S. K. Chamot, E. Rungger-Brandle, P. Ferrez, J. L. Munoz, H. van den Bergh, C. E. Riva, C. J. Pournaras, G. A. Wagnieres, Invest. Ophthalmol. Visual Sci., 2005, 46, 956–966.

    Article  Google Scholar 

  16. J. N. Demas, B. A. Degraff, Makromol. Chem., Macromol. Symp., 1992, 59, 35–51.

    Article  CAS  Google Scholar 

  17. W. Y. Xu, R. C. Mcdonough, B. Langsdorf, J. N. Demas, B. A. Degraff, Anal. Chem., 1994, 66, 4133–4141.

    Article  CAS  PubMed  Google Scholar 

  18. J. N. Demas, D. Diemente, E. W. Harris, J. Am. Chem. Soc., 1973, 95, 2.

    Google Scholar 

  19. J. N. Demas, G. A. Crosby, J. Mol. Spectrosc., 1968, 26, 72–77.

    Article  CAS  Google Scholar 

  20. H. Kobayashi, Y. Kaizu, Coord. Chem. Rev., 1985, 64, 53–64.

    Article  CAS  Google Scholar 

  21. Z. Rosenzweig, R. Kopelman, Sens. Actuators, B, 1996, 36, 475–483.

    Article  CAS  Google Scholar 

  22. E. R. Carraway, J. N. Demas, B. A. Degraff, J. R. Bacon, Anal. Chem., 1991, 63, 337–342.

    Article  CAS  Google Scholar 

  23. J. H. Koch, W. P. Rogers, F. P. Dwyer, E. C. Gyarfas, Aust. J. Biol. Sci., 1957, 10, 342–350.

    Article  CAS  Google Scholar 

  24. A. Yadav, T. Janaratne, A. Krishnan, S. S. Singhal, S. Yadav, A. S. Dayoub, D. L. Hawkins, S. Awasthi, F. M. MacDonnell, Mol. Cancer Ther., 2013, 12, 643–653.

    Article  CAS  PubMed  Google Scholar 

  25. M. Paxian, S. A. Keller, B. Cross, T. T. Huynh, M. G. Clemens, Am. J. Physiol.: Gastrointest. Liver Physiol., 2004, 286, G37–G44.

    CAS  Google Scholar 

  26. T. N. Tan, R. H. Weston, J. P. Hogan, Int. J. Appl. Radiat. Isot., 1971, 22, 301–308.

    Article  CAS  PubMed  Google Scholar 

  27. J. K. Asiedu, J. Ji, M. Nguyen, N. Rosenzweig, Z. Rosenzweig, J. Biomed. Opt., 2001, 6, 116–121.

    Article  CAS  PubMed  Google Scholar 

  28. J. W. Dobrucki, J. Photochem. Photobiol., B, 2001, 65, 136–144.

    Article  CAS  Google Scholar 

  29. V. Huntosova, S. Gay, P. Nowak-Sliwinska, S. K. Rajendran, M. Zellweger, H. van den Bergh, G. Wagnieres, J. Biomed. Opt., 2014, 19, 77004.

    Article  PubMed  CAS  Google Scholar 

  30. M. Zarebski, M. Kordon, J. W. Dobrucki, Photochem. Photobiol., 2014, 90, 709–715.

    Article  CAS  PubMed  Google Scholar 

  31. D. Garcia-Fresnadillo, Y. Georgiadou, G. Orellana, A. M. Braun, E. Oliveros, Helv. Chim. Acta, 1996, 79, 1222–1238.

    Article  CAS  Google Scholar 

  32. A. A. Abdel-Shafi, M. D. Ward, R. Schmidt, Dalton Trans., 2007, 2517–2527.

    Google Scholar 

  33. S. A. Poteet, M. B. Majewski, Z. S. Breitbach, C. A. Griffith, S. Singh, D. W. Armstrong, M. O. Wolf, F. M. MacDonnell, J. Am. Chem. Soc., 2013, 135, 2419–2422.

    Article  CAS  PubMed  Google Scholar 

  34. Y. J. Liu, C. H. Zeng, J. H. Yao, F. H. Wu, L. X. He, H. L. Huang, Chem. Biodiversity, 2010, 7, 1770–1783.

    Article  CAS  Google Scholar 

  35. F. Gao, H. Chao, Y. F. Wei, Y. X. Yuan, B. Peng, X. Chen, K. C. Zheng, L. N. Ji, Helv. Chim. Acta, 2008, 91, 395–410.

    Article  CAS  Google Scholar 

  36. M. Atsumi, L. Gonzalez, C. Daniel, J. Photochem. Photobiol., A, 2007, 190, 310–320.

    Article  CAS  Google Scholar 

  37. P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  38. P. R. Ogilby, Photochem. Photobiol. Sci., 2010, 9, 1543–1560.

    Article  CAS  PubMed  Google Scholar 

  39. A. A. Abdel-Shafi, D. R. Worrall, A. Y. Ershov, Dalton Trans., 2004, 30–36.

    Google Scholar 

  40. R. Schmidt, J. Phys. Chem. A, 2006, 110, 2622–2628.

    Article  CAS  PubMed  Google Scholar 

  41. S. Lee, L. Y. Zhu, A. M. Minhaj, M. F. Hinds, D. H. Vu, D. I. Rosen, S. J. Davis, T. Hasan, J. Biomed. Opt., 2008, 13, 034010.

    Article  PubMed  CAS  Google Scholar 

  42. S. Lee, D. H. Vu, M. F. Hinds, S. J. Davis, A. Liang, T. Hasan, J. Biomed. Opt., 2008, 13, 064035.

    Article  PubMed  CAS  Google Scholar 

  43. B. B. Benson, J. D. Krause, Limnol. Oceanogr., 1984, 29, 620–632.

    Article  CAS  Google Scholar 

  44. J. N. Demas, B. A. Degraff, Anal. Chem., 1991, 63, A829–A837.

    Article  Google Scholar 

  45. W. J. Dressick, J. Cline, J. N. Demas, B. A. Degraff, J. Am. Chem. Soc., 1986, 108, 7567–7574.

    Article  CAS  PubMed  Google Scholar 

  46. R. L. Jensen, J. Arnbjerg, P. R. Ogilby, J. Am. Chem. Soc., 2010, 132, 8098–8105.

    Article  CAS  PubMed  Google Scholar 

  47. L. P. F. Aggarwal, M. S. Baptista, L. E. Borissevitch, J. Photochem. Photobiol., A, 2007, 186, 187–193.

    Article  CAS  Google Scholar 

  48. F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 1993, 22, 113–262.

    Article  CAS  Google Scholar 

  49. M. E. Köse, B. F. Carroll, K. S. Schanze, Langmuir, 2005, 21, 9121–9129.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Bánó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varchola, J., Huntosova, V., Jancura, D. et al. Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation. Photochem Photobiol Sci 13, 1781–1787 (2014). https://doi.org/10.1039/c4pp00202d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00202d

Navigation