Skip to main content
Log in

Penetration, photo-reactivity and photoprotective properties of nanosized ZnO

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The oxidizing capacity and skin penetration of a commercial nanosized ZnO, Nanosun™ (Micronisers-Australia), were evaluated in vitro using porcine skin. Nanosun™ was initially characterized regarding its photo-reactivity and size distribution. An assay using methylene blue was performed to confirm the Nanosun™ photo-reactivity by exposing the labile molecule to UVA irradiation in the presence and absence of the nanosized ZnO. The nanosized ZnO was photo-reactive, reducing the methylene blue concentration to 7% while its concentration remained constant in the control formulation (without ZnO). The product label states that the average particle size is 30 nm. X-ray diffraction, nitrogen sorption and UV-spectrophotometry confirmed the presence of nanometric particles of approximately 30 nm. On the other hand, laser diffractometry showed micrometric particles in the size distribution profile. These analyses indicated that the nanoparticles are arranged as agglomerates and aggregates of micrometric proportions ranging from 0.6 to 60 µm. The skin lipid peroxidation was determined by the formation of thiobarbituric acid reactive species (TBARS) and quantified by UV-spectrophotometry. When exposed to UVA radiation the nanosized ZnO applied porcine skin showed a lower production of TBARS (7.2 ± 1.5 nmol g−1) than the controls, the MCT applied porcine skin (18.4 ± 2.8 nmol g−1) and the blank porcine skin (14.0 ± 2.0 nmol g−1). The penetration of ZnO nanoparticles was studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. The tested ZnO particles did not penetrate into viable layers of the intact porcine skin. The particles tend to accumulate on the skin folds and in these regions they may penetrate into the horny layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. F. Afaq, V. M. Adhami and H. Mukhtar, Photochemoprevention of ultraviolet B signaling and photocarcinogenesis, Mutat. Res., 2005, 571, 153–173.

    Article  CAS  Google Scholar 

  2. S. K. Jain and N. K. Jain, Multiparticulate carriers for sun-screening agents, Int. J. Cosmet. Sci., 2010, 32, 89–98.

    Article  CAS  Google Scholar 

  3. B. D. More, Physical sunscreens: on the comeback trail, Indian J. Dermatol. Venerol. Leprol., 2007, 73, 80–85.

    Article  Google Scholar 

  4. G. M. Murphy, Sunblocks: mechanisms of action, Photodermatol. Photoimmunol. Photomed., 1999, 15, 34–36.

    Article  CAS  Google Scholar 

  5. N. Serpone, D. Dondi and A. Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta, 2007, 360, 794–802.

    Article  CAS  Google Scholar 

  6. V. Sharma, R. Shukla, N. Saxena, D. Parmar, M. Das and A. Dhawan, DNA damaging potential of zinc oxide nanoparticles in human epidermal cells, Toxicol. Lett., 2009, 185, 211–218.

    Article  CAS  Google Scholar 

  7. S. Hayashia, H. Takeshitaa, N. Nagaoa, O. Nikaidob and N. Miwaa, The relationship between UVB screening and cytoprotection by microcorpuscular ZnO or ascorbate against DNA photodamage and membrane injuries in keratinocytes by oxidative stress, J. Photochem. Photobiol., B, 2001, 64, 27–35.

    Article  Google Scholar 

  8. K. Schilling, B. Bradford, D. Castelli, E. Dufour, F. Nash, W. Pape, S. Schulte, I. Tooley, J. van den Boschi and F. Schellauf, Human safety review of “nano” titanium dioxide and zinc oxide, Photochem. Photobiol. Sci., 2010, 9, 495–509.

    Article  CAS  Google Scholar 

  9. Z. Szikszai, Z. S. Kertesz, E. Bodnar, I. Major, I. Borbiro, A. Z. Kiss and J. Hunyadi, Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into intact and tape-stripped human skin, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, 268, 2160–2163.

    Article  CAS  Google Scholar 

  10. N. A. Monteiro-Riviere, K. Wiench, R. Landsiedel, S. Schulte, A. O. Inman and J. E. Riviere, Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study, Toxicol. Sci., 2011, 123, 264–280.

    Article  CAS  Google Scholar 

  11. S. R. Pinnell, D. Fairhurst, R. Gillies, M. A. Mitchnick and N. Kollias, Microfine Zinc Oxide is a Superior Sunscreen Ingredient to Microfine Titanium Dioxide, Dermatol. Surg., 2000, 26, 309–314.

    Article  CAS  Google Scholar 

  12. A. Rampaul, I. P. Parkin and L. P. Cramer, Damaging and protective properties of inorganic components of sunscreens applied to cultured human skin cells, J. Photochem. Photobiol., A, 2006, 191, 138–148.

    Article  Google Scholar 

  13. S. Sapino, M. E. Carlotti, G. Caron, E. Ugazio and R. Cavalli, In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-ß-cyclodextrin, J. Inclusion Phenom. Macrocyclic Chem., 2009, 63, 171–180.

    Article  CAS  Google Scholar 

  14. A. W. Pacek, C. C. Man and A. W. Nienow, On the sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel, Chem. Eng. Sci., 1998, 53, 2005–2011.

    Article  CAS  Google Scholar 

  15. S. M. Soosen, B. Lekshmi and K. C. George, Optical properties of ZnO nanoparticles, SB Academic Review, 2009, 1&2, 57–65, XVI.

    Google Scholar 

  16. M. S. Roberts, M. J. Roberts, T. A. Robertson, W. Sanchez, C. Thörling, Y. Zou, X. Zhao, W. Becker and A. V. Zvyagin, In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver, J. Biophoton., 2008, 1, 478–493.

    Article  CAS  Google Scholar 

  17. M. E. Darvin, K. Konig, M. Kellner-Hoefer, H. G. Breunig, W. Werncke, M. C. Meinke, A. Patzelt, W. Sterry and J. Lademann, Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products, Skin Pharmacol. Physiol., 2012, 25, 219–226.

    Article  CAS  Google Scholar 

  18. I. C. Külkamp, B. D. Rabelo, S. J. Berlitz, M. Isoppo, M. D. Bianchin, S. R. Schaffazick, A. R. Pohlmann and S. S. Guterres, Nanoencapsulation Improves the In Vitro Antioxidant Activity of Lipoic Acid, J. Biomed. Nanotechnol., 2011, 7, 598–607.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Guterres.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp50373a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detoni, C.B., Coradini, K., Back, P. et al. Penetration, photo-reactivity and photoprotective properties of nanosized ZnO. Photochem Photobiol Sci 13, 1253–1260 (2014). https://doi.org/10.1039/c3pp50373a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50373a

Navigation