Skip to main content
Log in

Attentional economics links value-modulated attentional capture and decision-making

  • Review Article
  • Published:

From Nature Reviews Psychology

View current issue Sign up to alerts

Abstract

Effective decision-making involves multiple steps to reduce a nearly limitless set of available choices to a final selection. The attention system plays a critical early role in this process by prioritizing and deprioritizing certain alternatives for further processing. Attention is rapidly and automatically directed to stimuli that have been repeatedly paired with highly rewarding outcomes. This attentional bias persists even when attending to the reward-related stimulus does not align with current goals and when the rewarding outcome is no longer desired. In this Review, we outline an ‘attentional economic’ hypothesis that links value-modulated attention to decision-making. Attentional prioritization of high-value choice alternatives increases the weighting of those alternatives during decision-making and thereby increases the likelihood that they will be chosen. We explore how this interaction between value, attention and decision-making might contribute to the maladaptive choices seen in addiction. By discussing the cognitive mechanisms at the intersection of visual cognition and decision-making, we offer an integrated framework for understanding value-modulated attention as a core aspect of motivated behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Attentional selection in the priority map.
Fig. 2: Influences on attentional selection across different timescales.
Fig. 3: The attentional economic hypothesis.

Similar content being viewed by others

References

  1. Kahneman, D. & Tversky, A. in Handbook of the Fundamentals of Financial Decision Making: Part I 99–127 (World Scientific, 1979).

  2. Savage, L. J. The Foundations of Statistics (Wiley, 1954).

  3. von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior commemorative edn (Princeton Univ. Press, 2007).

  4. Newell, B. R., Lagnado, D. A. & Shanks, D. R. Straight Choices: The Psychology of Decision Making (Taylor & Francis Group, 2007).

  5. Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

    Article  PubMed  Google Scholar 

  6. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010). This paper introduces a computational model of binary value-based decision-making: the accumulation of evidence for each choice alternative is weighted by attention (the aDDM).

    Article  PubMed  Google Scholar 

  8. Shimojo, S., Simion, C., Shimojo, E. & Scheier, C. Gaze bias both reflects and influences preference. Nat. Neurosci. 6, 1317–1322 (2003).

    Article  PubMed  Google Scholar 

  9. Newell, B. R. & Le Pelley, M. E. Perceptual but not complex moral judgments can be biased by exploiting the dynamics of eye-gaze. J. Exp. Psychol. Gen. 147, 409–417 (2018).

    Article  PubMed  Google Scholar 

  10. Armel, K. C., Beaumel, A. & Rangel, A. Biasing simple choices by manipulating relative visual attention. Judgm. Decis. Mak. 3, 396–403 (2008).

    Google Scholar 

  11. Le Pelley, M. E., Pearson, D., Griffiths, O. & Beesley, T. When goals conflict with values: counterproductive attentional and oculomotor capture by reward-related stimuli. J. Exp. Psychol. Gen. 144, 158–171 (2015). This paper introduces the single-phase VMAC design: participants are more likely to have their attention captured by a distractor that signals high-value reward than a distractor that signals low-value reward, even though attending to the distractors is counterproductive.

    Article  PubMed  Google Scholar 

  12. Anderson, B. A., Laurent, P. A. & Yantis, S. Value-driven attentional capture. Proc. Natl Acad. Sci. USA 108, 10367–10371 (2011). This study demonstrates the two-phase VMAC design: participants are slower to respond to a target when the display contained a distractor that has previously been paired with high-value reward than when no such distractor was present.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hickey, C., Chelazzi, L. & Theeuwes, J. Reward changes salience in human vision via the anterior cingulate. J. Neurosci. 30, 11096–11103 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Failing, M. & Theeuwes, J. Exogenous visual orienting by reward. J. Vis. 14, 1–9 (2014).

    Article  Google Scholar 

  15. Rusz, D., Le Pelley, M. E., Kompier, M. A. J., Mait, L. & Bijleveld, E. Reward-driven distraction: a meta-analysis. Psychol. Bull. 146, 872–899 (2020).

    Article  PubMed  Google Scholar 

  16. Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R. & Gottlieb, J. Reward modulates attention independently of action value in posterior parietal cortex. J. Neurosci. 29, 11182–11191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gottlieb, J., Hayhoe, M., Hikosaka, O. & Rangel, A. Attention, reward, and information seeking. J. Neurosci. 34, 15497–15504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gluth, S., Spektor, M. S. & Rieskamp, J. Value-based attentional capture affects multi-alternative decision making. eLife 7, e39659 (2018). This study investigates VMAC in multi-alternative decision-making: participants make less accurate choices in trials in which a high-reward distractor is present, and this effect is mediated by reward-related attention.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gluth, S., Kern, N., Kortmann, M. & Vitali, C. L. Value-based attention but not divisive normalization influences decisions with multiple alternatives. Nat. Hum. Behav. 4, 634–645 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    Article  PubMed  Google Scholar 

  21. Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).

    Article  PubMed  Google Scholar 

  22. Wolfe, J. M. Guided Search 6.0: an updated model of visual search. Psychon. Bull. Rev. 28, 1060–1092 (2021).

    Article  PubMed  Google Scholar 

  23. Awh, E., Belopolsky, A. V. & Theeuwes, J. Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends Cogn. Sci. 16, 437–443 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Failing, M. & Theeuwes, J. Selection history: how reward modulates selectivity of visual attention. Psychon. Bull. Rev. 25, 514–538 (2018).

    Article  PubMed  Google Scholar 

  25. Theeuwes, J. Visual selection: usually fast and automatic; seldom slow and volitional. J. Cogn. 1, 1–15 (2018).

    Google Scholar 

  26. Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W. & Theeuwes, J. Progress toward resolving the attentional capture debate. Vis. Cogn. 29, 1–21 (2021).

    Article  PubMed  Google Scholar 

  27. Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thompson, K. G. & Bichot, N. P. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005).

    PubMed  Google Scholar 

  29. Theeuwes, J. Goal-driven, stimulus-driven, and history-driven selection. Curr. Opin. Psychol. 29, 97–101 (2019).

    Article  PubMed  Google Scholar 

  30. Jiang, Y. V. Habitual versus goal-driven attention. Cortex 102, 107–120 (2018).

    Article  PubMed  Google Scholar 

  31. Gottlieb, J. Attention, learning, and the value of information. Neuron 76, 281–295 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).

    Article  PubMed  Google Scholar 

  33. Gottlieb, J., Cohanpour, M., Li, Y., Singletary, N. & Zabeh, E. Curiosity, information demand and attentional priority. Curr. Opin. Behav. Sci. 35, 83–91 (2020).

    Article  Google Scholar 

  34. Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).

    Article  PubMed  Google Scholar 

  35. Theeuwes, J. Top-down and bottom-up control of visual selection. Acta Psychol. 135, 77–99 (2010).

    Article  Google Scholar 

  36. Wolfe, J. M. & Horowitz, T. S. Five factors that guide attention in visual search. Nat. Hum. Behav. 1, 0058 (2017).

    Article  Google Scholar 

  37. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  PubMed  Google Scholar 

  38. Yantis, S. in Control of Cognitive Processes: Attention and Performance XVII (eds Monsell, S. & Driver, J.) 73–103 (MIT Press, 2000).

  39. Theeuwes, J. Perceptual selectivity for color and form. Percept. Psychophys. 51, 599–606 (1992).

    Article  PubMed  Google Scholar 

  40. Theeuwes, J. Endogenous and exogenous control of visual selection. Perception 23, 429–440 (1994).

    Article  PubMed  Google Scholar 

  41. Yantis, S. & Jonides, J. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 16, 121–134 (1990).

    Article  PubMed  Google Scholar 

  42. Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N. & Wills, A. J. Attention and associative learning in humans: an integrative review. Psychol. Bull. 142, 1111–1140 (2016).

    Article  PubMed  Google Scholar 

  43. Anderson, B. A. et al. The past, present, and future of selection history. Neurosci. Biobehav. Rev. 130, 326–350 (2021).

    Article  PubMed  Google Scholar 

  44. Kyllingsbæk, S., Schneider, W. X. & Bundesen, C. Automatic attraction of attention to former targets in visual displays of letters. Percept. Psychophys. 63, 85–98 (2001).

    Article  PubMed  Google Scholar 

  45. Sha, L. Z. & Jiang, Y. V. Components of reward-driven attentional capture. Atten. Percept. Psychophys. 78, 403–414 (2016).

    Article  PubMed  Google Scholar 

  46. Maljkovic, V. & Nakayama, K. Priming of pop-out: I. Role of features. Mem. Cognit. 22, 657–672 (1994).

    Article  PubMed  Google Scholar 

  47. Geng, J. J. & Behrmann, M. Spatial probability as an attentional cue in visual search. Percept. Psychophys. 67, 1252–1268 (2005).

    Article  PubMed  Google Scholar 

  48. Wang, B. & Theeuwes, J. Statistical regularities modulate attentional capture. J. Exp. Psychol. Hum. Percept. Perform. 44, 13–17 (2018).

    Article  PubMed  Google Scholar 

  49. Theeuwes, J., Kramer, A. F., Hahn, S. & Irwin, D. E. Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol. Sci. 9, 379–385 (1998).

    Article  Google Scholar 

  50. Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E. & Zelinsky, G. J. Influence of attentional capture on oculomotor control. J. Exp. Psychol. Hum. Percept. Perform. 25, 1595–1608 (1999).

    Article  PubMed  Google Scholar 

  51. van Zoest, W., Donk, M. & Theeuwes, J. The role of stimulus-driven and goal-driven control in saccadic visual selection. J. Exp. Psychol. Hum. Percept. Perform. 30, 746–759 (2004).

    Article  PubMed  Google Scholar 

  52. Hickey, C., van Zoest, W. & Theeuwes, J. The time course of exogenous and endogenous control of covert attention. Exp. Brain Res. 201, 789–796 (2010).

    Article  PubMed  Google Scholar 

  53. Pearson, D. et al. Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. Atten. Percept. Psychophys. 78, 2226–2240 (2016). This study shows that participants’ fastest saccades are more likely to be directed to a high-value distractor than another salient distractor, indicating that reward and bottom-up control influence the priority map across similar timescales.

    Article  PubMed  Google Scholar 

  54. Failing, M., Nissens, T., Pearson, D., Le Pelley, M. & Theeuwes, J. Oculomotor capture by stimuli that signal the availability of reward. J. Neurophysiol. 114, 2316–2327 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bucker, B., Belopolsky, A. V. & Theeuwes, J. Distractors that signal reward attract the eyes. Vis. Cogn. 23, 1–24 (2015).

    Article  Google Scholar 

  56. Nissens, T., Failing, M. & Theeuwes, J. People look at the object they fear: oculomotor capture by stimuli that signal threat. Cogn. Emot. 31, 1707–1714 (2017).

    Article  PubMed  Google Scholar 

  57. Schmidt, L. J., Belopolsky, A. V. & Theeuwes, J. The time course of attentional bias to cues of threat and safety. Cogn. Emot. 31, 845–857 (2017).

    Article  PubMed  Google Scholar 

  58. Mulckhuyse, M., Crombez, G. & Van der Stigchel, S. Conditioned fear modulates visual selection. Emotion 13, 529–536 (2013).

    Article  PubMed  Google Scholar 

  59. Qin, N., Gu, R., Xue, J., Chen, C. & Zhang, M. Reward-driven attention alters perceived salience. J. Vis. 21, 7–7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. O’Brien, J. L. & Raymond, J. E. Learned predictiveness speeds visual processing. Psychol. Sci. 23, 359–363 (2012).

    Article  PubMed  Google Scholar 

  61. Cheng, P. X., Rich, A. N. & Le Pelley, M. E. Reward rapidly enhances visual perception. Psychol. Sci. 32, 1994–2004 (2021).

    Article  PubMed  Google Scholar 

  62. Seitz, A. R., Kim, D. & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61, 700–707 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krebs, R. M., Boehler, C. N. & Woldorff, M. G. The influence of reward associations on conflict processing in the Stroop task. Cognition 117, 341–347 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Krebs, R. M., Boehler, C. N., Egner, T. & Woldorff, M. G. The neural underpinnings of how reward associations can both guide and misguide attention. J. Neurosci. 31, 9752–9759 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kiss, M., Driver, J. & Eimer, M. Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychol. Sci. 20, 245–251 (2009).

    Article  PubMed  Google Scholar 

  66. Kristjánsson, A., Sigurjónsdóttir, O. & Driver, J. Fortune and reversals of fortune in visual search: reward contingencies for pop-out targets affect search efficiency and target repetition effects. Atten. Percept. Psychophys. 72, 1229–1236 (2010).

    Article  PubMed  Google Scholar 

  67. Della Libera, C. & Chelazzi, L. Learning to attend and to ignore is a matter of gains and losses. Psychol. Sci. 20, 778–784 (2009).

    Article  PubMed  Google Scholar 

  68. Eimer, M. The N2pc component as an indicator of attentional selectivity. Electroencephalogr. Clin. Neurophysiol. 99, 225–234 (1996).

    Article  PubMed  Google Scholar 

  69. Luck, S. J. & Hillyard, S. A. Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31, 291–308 (1994).

    Article  PubMed  Google Scholar 

  70. Luck, S. J. in The Oxford Handbook of Event-Related Potential Components (eds Kappenman, E. S. & Luck, S. J.) (Oxford Univ. Press, 2011).

  71. Zivony, A., Allon, A. S., Luria, R. & Lamy, D. Dissociating between the N2pc and attentional shifting: an attentional blink study. Neuropsychologia 121, 153–163 (2018).

    Article  PubMed  Google Scholar 

  72. Anderson, B. A., Laurent, P. A. & Yantis, S. Learned value magnifies salience-based attentional capture. PLoS One 6, e27926 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Anderson, B. A. & Halpern, M. On the value-dependence of value-driven attentional capture. Atten. Percept. Psychophys. 79, 1001–1011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Anderson, B. A. & Yantis, S. Persistence of value-driven attentional capture. J. Exp. Psychol. Hum. Percept. Perform. 39, 6–9 (2013).

    Article  PubMed  Google Scholar 

  75. Mine, C. & Saiki, J. Task-irrelevant stimulus-reward association induces value-driven attentional capture. Atten. Percept. Psychophys. 77, 1896–1907 (2015).

    Article  PubMed  Google Scholar 

  76. Theeuwes, J. & Belopolsky, A. V. Reward grabs the eye: oculomotor capture by rewarding stimuli. Vis. Res. 74, 80–85 (2012).

    Article  PubMed  Google Scholar 

  77. Anderson, B. A., Faulkner, M. L., Rilee, J. J., Yantis, S. & Marvel, C. L. Attentional bias for nondrug reward is magnified in addiction. Exp. Clin. Psychopharmacol. 21, 499–506 (2013). This paper finds that individuals in treatment for opioid addiction show increased attentional capture by a (non-drug) reward-related distractor, relative to a control group.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Anderson, B. A. & Yantis, S. Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Atten. Percept. Psychophys. 74, 1644–1653 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Anderson, B. A., Leal, S. L., Hall, M. G., Yassa, M. A. & Yantis, S. The attribution of value-based attentional priority in individuals with depressive symptoms. Cogn. Affect. Behav. Neurosci. 14, 1221–1227 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Roper, Z. J. J., Vecera, S. P. & Vaidya, J. G. Value-driven attentional capture in adolescence. Psychol. Sci. 25, 1987–1993 (2014).

    Article  PubMed  Google Scholar 

  81. Qi, S., Zeng, Q., Ding, C. & Li, H. Neural correlates of reward-driven attentional capture in visual search. Brain Res. 1532, 32–43 (2013).

    Article  PubMed  Google Scholar 

  82. Hickey, C., Chelazzi, L. & Theeuwes, J. Reward has a residual impact on target selection in visual search, but not on the suppression of distractors. Vis. Cogn. 19, 117–128 (2011).

    Article  Google Scholar 

  83. Hickey, C. & van Zoest, W. Reward creates oculomotor salience. Curr. Biol. 22, R219–R220 (2012).

    Article  PubMed  Google Scholar 

  84. Hickey, C. & van Zoest, W. Reward-associated stimuli capture the eyes in spite of strategic attentional set. Vis. Res. 92, 67–74 (2013).

    Article  PubMed  Google Scholar 

  85. Pearson, D., Donkin, C., Tran, S. C., Most, S. B. & Le Pelley, M. E. Cognitive control and counterproductive oculomotor capture by reward-related stimuli. Vis. Cogn. 23, 41–66 (2015).

    Article  Google Scholar 

  86. Watson, P. et al. Attentional capture by Pavlovian reward-signalling distractors in visual search persists when rewards are removed. PLoS ONE 14, e0226284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Watson, P. et al. Capture and control: working memory modulates attentional capture by reward-related stimuli. Psychol. Sci. 30, 1174–1185 (2019).

    Article  PubMed  Google Scholar 

  88. Le Pelley, M. E., Pearson, D., Porter, A., Yee, H. & Luque, D. Oculomotor capture is influenced by expected reward value but (maybe) not predictiveness. Q. J. Exp. Psychol. 72, 168–181 (2019).

    Article  Google Scholar 

  89. Pearson, D., Watson, P., Cheng, P. X. & Le Pelley, M. E. Overt attentional capture by reward-related stimuli overcomes inhibitory suppression. J. Exp. Psychol. Hum. Percept. Perform. 46, 489–501 (2020).

    Article  PubMed  Google Scholar 

  90. Anderson, B. A. The attention habit: how reward learning shapes attentional selection. Ann. N. Y. Acad. Sci. 1369, 24–39 (2016).

    Article  PubMed  Google Scholar 

  91. Jiang, Y. V. & Sisk, C. A. Habit-like attention. Curr. Opin. Psychol. 29, 65–70 (2019).

    Article  PubMed  Google Scholar 

  92. Raymond, J. E. & O’Brien, J. L. Selective visual attention and motivation: the consequences of value learning in an attentional blink task. Psychol. Sci. 20, 981–988 (2009).

    Article  PubMed  Google Scholar 

  93. Failing, M. F. & Theeuwes, J. Nonspatial attentional capture by previously rewarded scene semantics. Vis. Cogn. 23, 82–104 (2015).

    Article  Google Scholar 

  94. Le Pelley, M. E., Seabrooke, T., Kennedy, B. L., Pearson, D. & Most, S. B. Miss it and miss out: counterproductive nonspatial attentional capture by task-irrelevant, value-related stimuli. Atten. Percept. Psychophys. 79, 1628–1642 (2017).

    Article  PubMed  Google Scholar 

  95. Le Pelley, M., Watson, P., Pearson, D., Abeywickrama, R. & Most, S. Winners and losers: reward and punishment produce biases in temporal selection. J. Exp. Psychol. Learn. Mem. Cogn. 45, 822–833 (2019).

    Article  PubMed  Google Scholar 

  96. Watson, P., Vasudevan, A., Pearson, D. & Le Pelley, M. E. Eating restraint is associated with reduced attentional capture by signals of valuable food reward. Appetite 159, 105050 (2021).

    Article  PubMed  Google Scholar 

  97. De Tommaso, M., Mastropasqua, T. & Turatto, M. The salience of a reward cue can outlast reward devaluation. Behav. Neurosci. 131, 226–234 (2017).

    Article  PubMed  Google Scholar 

  98. De Tommaso, M. & Turatto, M. On the resilience of reward cues attentional salience to reward devaluation, time, incentive learning, and contingency remapping. Behav. Neurosci. 135, 389–401 (2021). This study finds that participants continue to show an attentional bias for a stimulus paired with drink reward after the drink outcome has been devalued, suggesting that reward-related attention can be habit-like.

    Article  PubMed  Google Scholar 

  99. Pool, E., Brosch, T., Delplanque, S. & Sander, D. Where is the chocolate? Rapid spatial orienting toward stimuli associated with primary rewards. Cognition 130, 348–359 (2014).

    Article  PubMed  Google Scholar 

  100. Anderson, B. A. Social reward shapes attentional biases. Cogn. Neurosci. 7, 30–36 (2016).

    Article  PubMed  Google Scholar 

  101. Anderson, B. A. & Kim, H. Relating attentional biases for stimuli associated with social reward and punishment to autistic traits. Collabra Psychol. 4, 10 (2018).

    Article  Google Scholar 

  102. Kim, A. J. & Anderson, B. A. Neural correlates of attentional capture by stimuli previously associated with social reward. Cogn. Neurosci. 11, 5–15 (2020).

    Article  PubMed  Google Scholar 

  103. Izuma, K., Saito, D. N. & Sadato, N. Processing of social and monetary rewards in the human striatum. Neuron 58, 284–294 (2008).

    Article  PubMed  Google Scholar 

  104. Zink, C. F. et al. Know your place: neural processing of social hierarchy in humans. Neuron 58, 273–283 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Thorndike, E. L. Animal Intelligence: Experimental Studies (Macmillan, 1911).

  106. Ryan, R. M. & Deci, E. L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55, 68–78 (2000).

    Article  PubMed  Google Scholar 

  107. Mekler, E. D., Brühlmann, F., Tuch, A. N. & Opwis, K. Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Comput. Hum. Behav. 71, 525–534 (2017).

    Article  Google Scholar 

  108. Miranda, A. T. & Palmer, E. M. Intrinsic motivation and attentional capture from gamelike features in a visual search task. Behav. Res. Methods 46, 159–172 (2014).

    Article  PubMed  Google Scholar 

  109. Palmer, E., Davies, L., Nguyen, D., Berndt, M. & Miranda, A. Attentional capture for simple shapes from gamified visual search training. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 58, 1781–1785 (2014).

    Article  Google Scholar 

  110. Roper, Z. J. J. & Vecera, S. P. Funny money: the attentional role of monetary feedback detached from expected value. Atten. Percept. Psychophys. 78, 2199–2212 (2016).

    Article  PubMed  Google Scholar 

  111. Albertella, L., Watson, P., Yücel, M. & Le Pelley, M. E. Persistence of value-modulated attentional capture is associated with risky alcohol use. Addict. Behav. Rep. 10, 100195 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. Watson, P., Pearson, D., Theeuwes, J., Most, S. B. & Le Pelley, M. E. Delayed disengagement of attention from distractors signalling reward. Cognition 195, 104125 (2020).

    Article  PubMed  Google Scholar 

  113. Müller, S., Rothermund, K. & Wentura, D. Relevance drives attention: attentional bias for gain- and loss-related stimuli is driven by delayed disengagement. Q. J. Exp. Psychol. 69, 752–763 (2016).

    Article  Google Scholar 

  114. Wang, L., Yu, H. & Zhou, X. Interaction between value and perceptual salience in value-driven attentional capture. J. Vis. 13, 5 (2013).

    Article  PubMed  Google Scholar 

  115. Wentura, D., Müller, P. & Rothermund, K. Attentional capture by evaluative stimuli: gain- and loss-connoting colors boost the additional-singleton effect. Psychon. Bull. Rev. 21, 701–707 (2014).

    Article  PubMed  Google Scholar 

  116. Wentura, D., Müller, P., Rothermund, K. & Voss, A. Counter-regulation in affective attentional biases: evidence in the additional singleton paradigm. Q. J. Exp. Psychol. 71, 1209–1218 (2018).

    Article  Google Scholar 

  117. Schmidt, L. J., Belopolsky, A. V. & Theeuwes, J. Attentional capture by signals of threat. Cogn. Emot. 29, 687–694 (2015).

    Article  PubMed  Google Scholar 

  118. Anderson, B. A. & Britton, M. K. On the automaticity of attentional orienting to threatening stimuli. Emotion 20, 1109–1112 (2020).

    Article  PubMed  Google Scholar 

  119. Mikhael, S., Watson, P., Anderson, B. A. & Le Pelley, M. E. You do it to yourself: attentional capture by threat-signalling stimuli persists even when entirely counterproductive. Emotion 21, 1691–1698 (2021).

    Article  PubMed  Google Scholar 

  120. Anderson, B. A. Counterintuitive effects of negative social feedback on attention. Cogn. Emot. 31, 590–597 (2017).

    Article  PubMed  Google Scholar 

  121. Watson, P., Pearson, D., Wiers, R. W. & Le Pelley, M. E. Prioritizing pleasure and pain: attentional capture by reward-related and punishment-related stimuli. Curr. Opin. Behav. Sci. 26, 107–113 (2019).

    Article  Google Scholar 

  122. Becker, M. W., Hemsteger, S. H., Chantland, E. & Liu, T. Value-based attention capture: differential effects of loss and gain contingencies. J. Vis. 20, 4–4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hickey, C. & Peelen, M. V. Neural mechanisms of incentive salience in naturalistic human vision. Neuron 85, 512–518 (2015).

    Article  PubMed  Google Scholar 

  124. Grégoire, L. & Anderson, B. A. Semantic generalization of value-based attentional priority. Learn. Mem. 26, 460–464 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Anderson, B. A. Value-driven attentional priority is context specific. Psychon. Bull. Rev. 22, 750–756 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Anderson, B. A. Value-driven attentional capture is modulated by spatial context. Vis. Cogn. 23, 692–704 (2014).

    Google Scholar 

  127. Krajbich, I. & Rangel, A. Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proc. Natl Acad. Sci. USA 108, 13852–13857 (2011). This paper extends the aDDM to account for multi-alternative value-based decisions.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Cavanagh, J. F., Wiecki, T. V., Kochar, A. & Frank, M. J. Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143, 1476–1488 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shadlen, M. N. & Shohamy, D. Decision making and sequential sampling from memory. Neuron 90, 927–939 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Milosavljevic, M., Malmaud, J., Huth, A., Koch, C. & Rangel, A. The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgm. Decis. Mak. 5, 437–449 (2010).

    Google Scholar 

  132. Usher, M. & McClelland, J. L. Loss aversion and inhibition in dynamical models of multialternative choice. Psychol. Rev. 111, 757–769 (2004).

    Article  PubMed  Google Scholar 

  133. Tsetsos, K., Usher, M. & Chater, N. Preference reversal in multiattribute choice. Psychol. Rev. 117, 1275–1293 (2010).

    Article  PubMed  Google Scholar 

  134. Krajbich, I., Lu, D., Camerer, C. & Rangel, A. The attentional drift-diffusion model extends to simple purchasing decisions. Front. Psychol. 3, 193 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Krajbich, I. Accounting for attention in sequential sampling models of decision making. Curr. Opin. Psychol. 29, 6–11 (2019).

    Article  PubMed  Google Scholar 

  136. Busemeyer, J. R. & Townsend, J. T. Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100, 432–459 (1993).

    Article  PubMed  Google Scholar 

  137. Sepulveda, P. et al. Visual attention modulates the integration of goal-relevant evidence and not value. eLife 9, e60705 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Towal, R. B., Mormann, M. & Koch, C. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. Proc. Natl Acad. Sci. USA 110, E3858–E3867 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Thomas, A. W., Molter, F., Krajbich, I., Heekeren, H. R. & Mohr, P. N. C. Gaze bias differences capture individual choice behaviour. Nat. Hum. Behav. 3, 625–635 (2019).

    Article  PubMed  Google Scholar 

  140. Smith, S. M. & Krajbich, I. Gaze amplifies value in decision making. Psychol. Sci. 30, 116–128 (2019).

    Article  PubMed  Google Scholar 

  141. Shevlin, B. R. K. & Krajbich, I. Attention as a source of variability in decision-making: accounting for overall-value effects with diffusion models. J. Math. Psychol. 105, 102594 (2021).

    Article  Google Scholar 

  142. Mormann, M. & Russo, J. E. Does attention increase the value of choice alternatives? Trends Cogn. Sci. 25, 305–315 (2021).

    Article  PubMed  Google Scholar 

  143. Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gwinn, R., Leber, A. B. & Krajbich, I. The spillover effects of attentional learning on value-based choice. Cognition 182, 294–306 (2019).

    Article  PubMed  Google Scholar 

  145. Itthipuripat, S., Cha, K., Rangsipat, N. & Serences, J. T. Value-based attentional capture influences context-dependent decision-making. J. Neurophysiol. 114, 560–569 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Callaway, F., Rangel, A. & Griffiths, T. L. Fixation patterns in simple choice reflect optimal information sampling. PLoS Comput. Biol. 17, e1008863 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jang, A. I., Sharma, R. & Drugowitsch, J. Optimal policy for attention-modulated decisions explains human fixation behavior. eLife 10, e63436 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sims, C. A. Implications of rational inattention. J. Monet. Econ. 50, 665–690 (2003).

    Article  Google Scholar 

  149. Sims, C. A. in Handbook of Monetary Economics Vol. 3 Ch. 4 (eds. Friedman, B. M. & Woodford, M.) 155–181 (Elsevier, 2010).

  150. Caplin, A. & Dean, M. Revealed preference, rational inattention, and costly information acquisition. Am. Econ. Rev. 105, 2183–2203 (2015).

    Article  Google Scholar 

  151. Hébert, B. & Woodford, M. Rational inattention and sequential information sampling. National Bureau of Economic Research https://www.nber.org/papers/w23787 (2017).

  152. Frömer, R., Dean Wolf, C. K. & Shenhav, A. Goal congruency dominates reward value in accounting for behavioral and neural correlates of value-based decision-making. Nat. Commun. 10, 4926 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kovach, C., Sutterer, M., Rushia, S., Teriakidis, A. & Jenison, R. Two systems drive attention to rewards. Front. Psychol. 5, 46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Field, M. & Cox, W. M. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug. Alcohol. Depend. 97, 1–20 (2008).

    Article  PubMed  Google Scholar 

  155. Wiers, R. W., Field, M. & Stacy, A. W. in The Oxford Handbook of Substance Use and Substance Use Disorders (ed. Sher, K. J.) Vol. 1, 311–350 (Oxford Univ. Press, 2016).

  156. Cox, W. M., Hogan, L. M., Kristian, M. R. & Race, J. H. Alcohol attentional bias as a predictor of alcohol abusers’ treatment outcome. Drug Alcohol. Depend. 68, 237–243 (2002).

    Article  PubMed  Google Scholar 

  157. Marissen, M. A. E. et al. Attentional bias predicts heroin relapse following treatment. Addiction 101, 1306–1312 (2006).

    Article  PubMed  Google Scholar 

  158. Waters, A. J. et al. Attentional bias predicts outcome in smoking cessation. Health Psychol. 22, 378–387 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Field, M., Mogg, K., Mann, B., Bennett, G. A. & Bradley, B. P. Attentional biases in abstinent alcoholics and their association with craving. Psychol. Addict. Behav. 27, 71–80 (2013).

    Article  PubMed  Google Scholar 

  160. Waters, A. J., Shiffman, S., Bradley, B. P. & Mogg, K. Attentional shifts to smoking cues in smokers. Addiction 98, 1409–1417 (2003).

    Article  PubMed  Google Scholar 

  161. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  PubMed  Google Scholar 

  162. Stormark, K. M., Field, N. P., Hugdahl, K. & Horowitz, M. Selective processing of visual alcohol cues in abstinent alcoholics: an approach–avoidance conflict? Addict. Behav. 22, 509–519 (1997).

    Article  PubMed  Google Scholar 

  163. Noël, X. et al. Time course of attention for alcohol cues in abstinent alcoholic patients: the role of initial orienting. Alcohol. Clin. Exp. Res. 30, 1871–1877 (2006).

    Article  PubMed  Google Scholar 

  164. Anderson, B. A. What is abnormal about addiction-related attentional biases? Drug. Alcohol. Depend. 167, 8–14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Boakes, R. in Operant-Pavlovian Interactions (eds Davis, H. & Hurwirtz, H.) 67–98 (Erlbaum, 1977).

  166. Flagel, S. B., Watson, S. J., Robinson, T. E. & Akil, H. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology 191, 599–607 (2007).

    Article  PubMed  Google Scholar 

  167. Flagel, S. B., Akil, H. & Robinson, T. E. Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology 56, 139–148 (2009).

    Article  PubMed  Google Scholar 

  168. Flagel, S. B., Watson, S. J., Akil, H. & Robinson, T. E. Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behav. Brain Res. 186, 48–56 (2008).

    Article  PubMed  Google Scholar 

  169. Colaizzi, J. M. et al. Mapping sign-tracking and goal-tracking onto human behaviors. Neurosci. Biobehav. Rev. 111, 84–94 (2020). This paper reviews the behavioural and neurobiological characteristics of sign-tracking behaviour in rodent models and draws parallels with human behaviour, including reward-related attentional biases.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Albertella, L. et al. Selective attention moderates the relationship between attentional capture by signals of nondrug reward and illicit drug use. Drug Alcohol. Depend. 175, 99–105 (2017).

    Article  PubMed  Google Scholar 

  171. Liu, C. et al. Reward-related attentional capture moderates the association between fear-driven motives and heavy drinking. Eur. Addict. Res. 27, 351–361 (2021).

    Article  PubMed  Google Scholar 

  172. Albertella, L., Vd Hooven, J., Bovens, R. & Wiers, R. W. Reward-related attentional capture predicts non-abstinence during a one-month abstinence challenge. Addict. Behav. 114, 106745 (2021). This study finds that participants who show increased VMAC have an increased likelihood of failing a 1-month alcohol abstinence challenge, demonstrating that (non-drug) reward-related attention is related to (un)successful addiction-related behaviour change.

    Article  PubMed  Google Scholar 

  173. Albertella, L. et al. Reward-related attentional capture is associated with severity of addictive and obsessive-compulsive behaviors. Psychol. Addict. Behav. 33, 495–502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Albertella, L. et al. Reward-related attentional capture and cognitive inflexibility interact to determine greater severity of compulsivity-related problems. J. Behav. Ther. Exp. Psychiatry 69, 101580 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Verdejo-García, A., Bechara, A., Recknor, E. C. & Pérez-García, M. Negative emotion-driven impulsivity predicts substance dependence problems. Drug Alcohol. Depend. 91, 213–219 (2007).

    Article  PubMed  Google Scholar 

  176. Yücel, M. et al. A transdiagnostic dimensional approach towards a neuropsychological assessment for addiction: an international Delphi consensus study. Addiction 114, 1095–1109 (2019).

    Article  PubMed  Google Scholar 

  177. Rose, A. K., Brown, K., Field, M. & Hogarth, L. The contributions of value-based decision-making and attentional bias to alcohol-seeking following devaluation. Addiction 108, 1241–1249 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hogarth, L. Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. Neuropsychopharmacology 45, 720–735 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hogarth, L. & Field, M. Relative expected value of drugs versus competing rewards underpins vulnerability to and recovery from addiction. Behav. Brain Res. 394, 112815 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Franken, I. H. A. & Muris, P. Individual differences in decision-making. Personal. Individ. Differ. 39, 991–998 (2005).

    Article  Google Scholar 

  181. Field, M. et al. Recovery from addiction: behavioral economics and value-based decision making. Psychol. Addict. Behav. 34, 182–193 (2020).

    Article  PubMed  Google Scholar 

  182. Montague, P. R., Dolan, R. J., Friston, K. J. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    Article  PubMed  Google Scholar 

  183. Mukherjee, D. & Kable, J. W. Value-based decision making in mental illness: a meta-analysis. Clin. Psychol. Sci. 2, 767–782 (2014).

    Article  Google Scholar 

  184. Gaspelin, N. & Luck, S. J. Inhibition as a potential resolution to the attentional capture debate. Curr. Opin. Psychol. 29, 12–18 (2019).

    Article  PubMed  Google Scholar 

  185. Lavie, N. & de Fockert, J. The role of working memory in attentional capture. Psychon. Bull. Rev. 12, 669–674 (2005).

    Article  PubMed  Google Scholar 

  186. Lavie, N. & de Fockert, J. Frontal control of attentional capture in visual search. Vis. Cogn. 14, 863–876 (2006).

    Article  Google Scholar 

  187. Gaspelin, N., Leonard, C. J. & Luck, S. J. Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychol. Sci. 26, 1740–1750 (2015).

    Article  PubMed  Google Scholar 

  188. Gaspelin, N., Leonard, C. J. & Luck, S. J. Suppression of overt attentional capture by salient-but-irrelevant color singletons. Atten. Percept. Psychophys. 79, 45–62 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gaspelin, N. & Luck, S. J. Combined electrophysiological and behavioral evidence for the suppression of salient distractors. J. Cogn. Neurosci. 30, 1265–1280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gaspelin, N. & Luck, S. J. Distinguishing among potential mechanisms of singleton suppression. J. Exp. Psychol. Hum. Percept. Perform. 44, 626–644 (2018).

    Article  PubMed  Google Scholar 

  191. Gaspelin, N., Gaspar, J. M. & Luck, S. J. Oculomotor inhibition of salient distractors: voluntary inhibition cannot override selection history. Vis. Cogn. 27, 227–246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kim, H. & Anderson, B. A. Combined influence of valence and statistical learning on the control of attention: evidence for independent sources of bias. Cognition 208, 104554 (2021).

    Article  PubMed  Google Scholar 

  193. Le Pelley, M. E. et al. Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search. Atten. Percept. Psychophys. https://doi.org/10.3758/s13414-021-02426-7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Pearson, D., Watson, P. & Le Pelley, M. E. How do competing influences of selection history interact? A commentary on Luck et al. (2021). Vis. Cogn. 29, 552–555 (2021).

    Article  Google Scholar 

  195. Grégoire, L., Britton, M. K. & Anderson, B. A. Motivated suppression of value- and threat-modulated attentional capture. Emotion https://doi.org/10.1037/emo0000777 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Pearson, D. & Le Pelley, M. E. Learning to avoid looking: competing influences of reward on overt attentional selection. Psychon. Bull. Rev. 27, 998–1005 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Pearson, D. & Le Pelley, M. E. Reward encourages reactive, goal-directed suppression of attention. J. Exp. Psychol. Hum. Percept. Perform. 47, 1348–1364 (2021).

    Article  PubMed  Google Scholar 

  198. Balleine, B. W. & O’Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    Article  PubMed  Google Scholar 

  199. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005).

    Article  PubMed  Google Scholar 

  200. Watson, P. & de Wit, S. Current limits of experimental research into habits and future directions. Curr. Opin. Behav. Sci. 20, 33–39 (2018).

    Article  Google Scholar 

  201. Dickinson, A. & Weiskrantz, L. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 308, 67–78 (1985).

    Article  Google Scholar 

  202. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    Article  PubMed  Google Scholar 

  203. Luque, D. et al. Goal-directed and habit-like modulations of stimulus processing during reinforcement learning. J. Neurosci. 37, 3009–3017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Watson, P., Pavri, Y., Le, J. T., Pearson, D. & Pelley, M. L. Attentional capture by signals of food and drink reward persists following outcome devaluation. Preprint at psyarxiv https://doi.org/10.31234/osf.io/2jmpb (2021).

  205. Le, J. T., Watson, P. & Pelley, M. L. ‘Habit-like’ attentional prioritisation of reward-related stimuli. Preprint at psyarxiv https://doi.org/10.31234/osf.io/mwjhk (2021).

  206. Gupta, R., Hur, Y. J. & Lavie, N. Distracted by pleasure: effects of positive versus negative valence on emotional capture under load. Emotion 16, 328–337 (2016).

    Article  PubMed  Google Scholar 

  207. Bucker, B. & Theeuwes, J. Appetitive and aversive outcome associations modulate exogenous cueing. Atten. Percept. Psychophys. 78, 2253–2265 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Anderson, B. A. et al. The role of dopamine in value-based attentional orienting. Curr. Biol. 26, 550–555 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Anderson, B. A. et al. Linking dopaminergic reward signals to the development of attentional bias: a positron emission tomographic study. NeuroImage 157, 27–33 (2017).

    Article  PubMed  Google Scholar 

  210. Lin, Z., Cabrera-Haro, L. E. & Reuter-Lorenz, P. A. Asymmetrical learning and memory for acquired gain versus loss associations. Cognition 202, 104318 (2020).

    Article  PubMed  Google Scholar 

  211. Eysenck, M. W., Derakshan, N., Santos, R. & Calvo, M. G. Anxiety and cognitive performance: attentional control theory. Emotion 7, 336–353 (2007).

    Article  PubMed  Google Scholar 

  212. Gotlib, I. H., Krasnoperova, E., Yue, D. N. & Joormann, J. Attentional biases for negative interpersonal stimuli in clinical depression. J. Abnorm. Psychol. 113, 127–135 (2004).

    Article  Google Scholar 

  213. Luck, S. J. & Gold, J. M. The construct of attention in schizophrenia. Biol. Psychiatry 64, 34–39 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Beevers, C. G., Lee, H.-J., Wells, T. T., Ellis, A. J. & Telch, M. J. Association of predeployment gaze bias for emotion stimuli with later symptoms of PTSD and depression in soldiers deployed in Iraq. Am. J. Psychiatry 168, 735–741 (2011).

    Article  PubMed  Google Scholar 

  215. Anderson, B. A. Relating value-driven attention to psychopathology. Curr. Opin. Psychol. 39, 48–54 (2021).

    Article  PubMed  Google Scholar 

  216. Foti, D. & Hajcak, G. Depression and reduced sensitivity to non-rewards versus rewards: evidence from event-related potentials. Biol. Psychol. 81, 1–8 (2009).

    Article  PubMed  Google Scholar 

  217. Henriques, J. B. & Davidson, R. J. Decreased responsiveness to reward in depression. Cogn. Emot. 14, 711–724 (2000).

    Article  Google Scholar 

  218. Eshel, N. & Roiser, J. P. Reward and punishment processing in depression. Biol. Psychiatry 68, 118–124 (2010).

    Article  PubMed  Google Scholar 

  219. Anderson, B. A., Chiu, M., DiBartolo, M. M. & Leal, S. L. On the distinction between value-driven attention and selection history: evidence from individuals with depressive symptoms. Psychon. Bull. Rev. 24, 1636–1642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Willcutt, E. G. et al. Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. J. Abnorm. Psychol. 121, 991–1010 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Luman, M., Tripp, G. & Scheres, A. Identifying the neurobiology of altered reinforcement sensitivity in ADHD: a review and research agenda. Neurosci. Biobehav. Rev. 34, 744–754 (2010).

    Article  PubMed  Google Scholar 

  222. Sali, A. W., Anderson, B. A., Yantis, S., Mostofsky, S. H. & Rosch, K. S. Reduced value-driven attentional capture among children with ADHD compared to typically developing controls. J. Abnorm. Child. Psychol. 46, 1187–1200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Patros, C. H. G. et al. Choice-impulsivity in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a meta-analytic review. Clin. Psychol. Rev. 43, 162–174 (2016).

    Article  PubMed  Google Scholar 

  224. Howes, O. D. & Kapur, S. The dopamine hypothesis of schizophrenia: version III — the final common pathway. Schizophr. Bull. 35, 549–562 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Article  PubMed  Google Scholar 

  226. Nelson, B., Whitford, T. J., Lavoie, S. & Sass, L. A. What are the neurocognitive correlates of basic self-disturbance in schizophrenia?: integrating phenomenology and neurocognition: Part 2 (aberrant salience). Schizophr. Res. 152, 20–27 (2014).

    Article  PubMed  Google Scholar 

  227. Strauss, G. P., Waltz, J. A. & Gold, J. M. A review of reward processing and motivational impairment in schizophrenia. Schizophr. Bull. 40, S107–S116 (2014).

    Article  PubMed  Google Scholar 

  228. Bansal, S. et al. The impact of reward on attention in schizophrenia. Schizophr. Res. Cogn. 12, 66–73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Foa, F., Edna, B. & Kozak, M. J. DSM-IV field trial: obsessive-compulsive disorder. Am. J. Psychiatry 152, 90–96 (1995).

    PubMed  Google Scholar 

  230. Franklin, M. E. & Foa, E. B. in Clinical Handbook of Psychological Disorders: A Step By Step Treatment Manual (ed. Barlow, D. H.) 164–215 (Guilford, 2007).

Download references

Acknowledgements

This work was supported by an Australian Research Council grant (DP200101314). P.W. was supported by an Australian Research Council Discovery Early Career Researcher Award (DE200100591).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. D.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Daniel Pearson or Mike E. Le Pelley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Sebastian Gluth and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearson, D., Watson, P., Albertella, L. et al. Attentional economics links value-modulated attentional capture and decision-making. Nat Rev Psychol 1, 320–333 (2022). https://doi.org/10.1038/s44159-022-00053-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00053-z

  • Springer Nature America, Inc.

This article is cited by

Navigation